Hendrik Antoon Lorentz
Hendrik Antoon Lorentz | |
![]() | |
Rođenje | 18. srpnja 1853. Arnhem, Gelderland, Nizozemska |
---|---|
Smrt | 4. veljače 1928. Haarlem, Sjeverna Nizozemska, Nizozemska |
Državljanstvo | Nizozemac |
Polje | Fizika |
Institucija | Sveučilište u Leidenu |
Alma mater | Sveučilište u Leidenu |
Akademski mentor | Pieter Rijke |
Poznat po | Lorentzove transformacije, Lorentzov faktor, Lorentzov plin, Lorentzov triplet, Lorentzova sila, Lorentzov broj Lorentzov model |
Istaknute nagrade | Nobelova nagrada za fiziku (1902.) Copleyeva medalja (1918.) |
Hendrik Antoon Lorentz (Arnheim, 18.7. 1853. - Haarlem, 4.2. 1928.), nizozemski teorijski fizičar. U svojim radovima objasnio je gotovo sve elektromagnetske pojave poznate u to doba.
Proučavao je pojave kod naelektriziranih tijela u gibanju i postavio osnovu za teoriju relativnosti. Prvi je izračunao širenje interferencijskih maksimuma kod difrakcije svjetlosti u kristalima (Lorentzov faktor). Proučavao je binarne plinove u kojih je masa molekula jednog plina mnogo veća od mase od mase molekula drugog plina (Lorentzov plin) i rezultate primjenio na teoriju elektrona u metalu. Godine 1902. dobio je Nobelovu nagradu za fiziku s Pieterom Zeemanom s kojim je otkrio i na osnovi klasične teorije prvi proračunao cijepanje singletnih spektralnih linija u tri komponenete (Lorentzov triplet) u vanjskom magnetskom polju (normalni Zeemanov efekt).
Bio je sveučilišni profesor u Leidenu te direktor istraživačkog instituta u Haarlemu.
Životopis[uredi | uredi kod]
Rani život[uredi | uredi kod]
H. A. Lorentz rođen je u Arnhemu, Gelderland (Nizozemska), kao sin Gerrita Frederika Lorentza (1822.– 1893.) i Geertruide van Ginkel (1826.– 1861.). Nakon majčine smrti 1862., njegov se otac oženio Lubertom Hupkes. Iako je odgojen kao protestant, Hendrik Lorentz je po religijskom uvjerenju bio slobodni mislioc.[1] Od 1866. do 1869. pohađao je školu "Hogere Burger" u Arnhemu, novi tip škole nedavno ustanovljen od strane J. R. Thorbeckeja. Njegovi su rezultati u školi bili izvrsni, a briljirao je u znanstvenim predmetima, engleskom, francuskom i njemačkom. Godine 1870., položio je klasične jezike, koji su bili preduvjet za primanje na sveučilište. [2]
Znanstvena karijera[uredi | uredi kod]
Lorentz je studirao fiziku i matematiku na Sveučilištu u Leidenu, gdje je bio pod jakim utjecajem njegovog profesora astronomije F. Kaisera, koji ga je usmjerio na karijeru u fizici. Nakon diplome, vratio se 1871. u Arnhem, gdje je predavao matematiku u školi, no nastavio je i studij u Leidenu. Godine 1875. Lorentz stječe doktorat pod mentorstvom P. Rijkea s radom Over de theorie der terugkaatsing en breking van het licht (O teoriji o refleksiji i refrakciji svjetlosti), u kojoj je preradio Maxwellovu elektromagnetsku teoriju .[2]
Osim što je bio sveučilišni profesor u Leidenu, bio je i direktor istraživačkog instituta u Haarlemu. Svojim radovima mnogo je pridonio razvoju elektromagnetske teorije i poznavanju strukture materije. Proučavao je pojave kod naelektriziranih tijela u gibanju i postavio osnovu za specijalnu teoriju relativnosti. Prvi je izračunao širenje interferencijskih maksimuma kod loma svjetlosti u kristalima (Lorentzov faktor). Proučavao je binarne plinove u kojih je masa molekula jednog plina mnogo veća od mase od mase molekula drugog plina (Lorentzov plin) i rezultate primjenio na teoriju elektrona u metalu. Godine 1902. dobio je Nobelovu nagradu za fiziku s P. Zeemanom s kojim je otkrio i na osnovi klasične teorije prvi proračunao cijepanje singletnih spektralnih linija u tri komponenete (Lorentzov triplet) u vanjskom magnetskom polju (normalni Zeemanov učinak).
Naučni rad[uredi | uredi kod]
Lorentzove transformacije[uredi | uredi kod]
Lorentzove transformacije (po H. A. Lorentzu) su algebarske linearne relacije koje povezuju koordinate (x, y, z, t) nekoga fizičkog događaja u mirnome sustavu S (x, y, z, t) s pripadajućim koordinatama (x', y', z', t' ) u sustavu S' (x', y', z', t' ) koji se prema sustavu S giba uzduž osi x stalnom brzinom v. One se danas izvode, dokazuju i tumače iz dva postulata Einsteinove posebne teorije relativnosti (1905.):
- postulata o konstantnosti brzine svjetlosti c u svim inercijskim sustavima bez obzira na brzinu sustava, izvora ili detektora svjetlosti, te
- postulata kovarijantnosti da prirodni zakoni moraju imati isti oblik u svim inercijskim sustavima.
Polazeći od toga da svjetlosni signali (fotoni) putuju brzinom c u oba sustava i da se pravocrtna gibanja iz jednoga, kao takva, vide i u drugom sustavu i obratno (x = c∙t i x' = c∙t' ), kao i od načela relativnosti (zamjene uloge sustava S i S' i koordinata u njima), dobivaju se uz odgovarajući algebarski formalizam Lorentzove transformacije u obliku:
gdje se γ uobičajeno naziva Lorentzovim faktorom i vrijedi:
Obratne (inverzne) transformacije dobivaju se zamjenom v s –v u već napisanim odnosima, na primjer: ili … i tako dalje). Jedna je od temeljnih simetrija u fizici invarijantnost fizičkih zakona na Lorentzove transformacije (relativistička invarijantnost): jednadžbe fizike u svakom teoretskom pokušaju trebaju imati isti oblik u svim inercijskim sustavima. U modernoj fizici elementarnih čestica, invarijantnost se općenito postiže zapisom veličina i jednadžbi u 4-vektorskoj formulaciji, po uzoru na 4 koordinate prostor–vremena u posebnoj teoriji relativnosti.
Lorentzova sila[uredi | uredi kod]
Lorentzova sila je sila kojom električno i magnetsko polje djeluju na nabijenu česticu u gibanju. Kada se nabijena "točkasta" čestica (mjere čestica su male tako da su vanjska polja homogena kroz područje što ga čestica ispunjava) giba u navedenim poljima, na nju djeluje sila:
gdje je: q - električni naboj čestice, E - jakost električnoga polja, v - brzina čestice, B - magnetska indukcija. Vektori E i B neovisni su o brzini čestice v. Drugi član u Lorentzovoj sili opisuje silu kojom magnetsko polje indukcije B djeluje na električki nabijenu česticu u gibanju, što je ujedno i definicijska jednadžba za magnetsku indukciju B. Analogno, FE = q∙E definicijska je jednadžba za vektor električnog polja E. Lorentzova je sila ključna za opis i proračun gibanja nabijenih čestica u magnetskom polju (ubrzivač čestica), za razdvajanje iona različitih masa u električnom i magnetskom polju (masena spektrometrija), te u modernoj akceleratorskoj tehnici linearnih ili sudarajućih snopova čestica gdje se primjenom supravodičkih tehnologija postižu vrlo homogena polja velike magnetske indukcije.
Lorentzov model[uredi | uredi kod]
Lorentzov model je slika atomske građe tvari (metala, dielektričnih materijala izolatora) i klasični izračun doprinosa električnoga polja okolnih dipola u unutrašnjosti čvrste tvari. U modelu Lorentzova polja, tvar se oko zamišljenoga pokusnog dipola razdvaja u dva područja: sferu, u središtu koje je pokusni dipol i polumjer koje odgovara mnogostrukom atomskom razmaku, te ostatak dielektrika u kojem vlada električna polarizacija opisana vektorom . Bilo koji kubični raspored atoma unutar sfere, kojim bi atomi djelovali na pokusni dipol, rezultira uvijek nultim električnim poljem u središtu. Međutim, polarizirani naboj na površini sfere daje u njezinu središtu električno polje nazvano Lorentzovim poljem koje je on prvi izračunao:
gdje je: - električna polarizacija na promatranom mjestu, a ε0 dielektrična permitivnost vakuuma. Dakle, u nekom položaju u tvari, lokalno polje iznosi:
gdje je: Ev - vanjsko električno polje, a EL - Lorentzovo polje. To je temeljni odnos za proračun i povezivanje atomskih i makroskopskih veličina električnih svojstava tvari. Važni je dio Lorentzove teorije i model elektronskoga plina, zasnovan oko 1900.: atomi u kristalnoj rešetki otpuštaju 1, 2 ili 3 elektrona koji se kao slobodni elektroni gibaju kroz rešetku metala.
Izvori[uredi | uredi kod]
- ↑ Russell McCormmach. „Lorentz, Hendrik Antoon”. Complete Dictionary of Scientific Biography. Pristupljeno 25. travnja 2012. »Although he grew up in Protestant circles, he was a freethinker in religious matters; he regularly attended the local French church to improve his French.«
- ↑ 2,0 2,1 Kox, Anne J. (2011). „Hendrik Antoon Lorentz (in Dutch)”. Nederlands Tijdschirft voor Natuurkunde 77 (12): 441.