Tekućine

Izvor: Wikipedia
Ambox warning blue construction.svg Jedan korisnik upravo radi na ovom članku! Mole se ostali suradnici da ne uređuju članak dok je ova obavijest prisutna. Koristite stranicu za razgovor na ovom članku ako imate komentare i pitanja u vezi s člankom. Kada radovi budu gotovi, suradnik koji uređuje uklonit će ovaj predložak! Hvala na razumijevanju!
(Predložak može biti uklonjen ako kroz tri dana od trenutka postavljanja nema izmjena na članku.)
Raspored molekula u plinovitom, tečnom i čvrstom stanju[1]
Formiranjem sferne kapi tečne vode se minimizuje površina,[2] što je prirodni rezultat dejstva površinskog napona u tečnostima.[3][4]
Privlačne sile među česticama tečnosti su slabije od sila čvrste materije, stoga se molekuli tečnosti mogu slobodnije kretati.

Tečnosit ili tekućine su materije tečnog agregatnog stanja.[5] Takve materije nemaju stalan oblik, ali imaju stalnu zapreminu, jer su privlačne sile među njihovim česticama slabije pa se mogu slobodnije kretati. Tečnosti, prema tome, lako menjaju oblik odnosno zauzimaju oblik posude u kojoj se nalaze. U hemiji se materije tečnog agregatnog stanja označavaju malim slovom L (eng. liquid - tečnost). U periodnom sistemu elemenata najmanje je tečnih elemenata,[6] dok su molekularne tečnosti vrlo rasprostranjene u prirodi.

Tečnost je skoro nekompresibilan fluid[7][8] koji zadržava (skoro) konstantnu zapreminu nezavisno od pritiska. Kao takva, tečnost je jedno od četiri fundamentalna stanja materije (pri čemu su druga: čvrsto stanje, gas, i plazma), i ona je jedino stanje sa određenom zapreminom bez fiksnog oblika. Tečnost je sačinjena od malih vibrirajućih čestica materije, kao što su atomi, koji su povezani intermolekularnim vezama.[9][10] Voda je daleko najrasprostranjenija tečnost na Zemlji. Poput gasova, tečnost ima sposobnost proticanja i zauzima oblik suda. Vežina tečnosti je otporna na kompresiju, mada se neke mogu komprimovati. Za razliku od gasova, tečnost se ne širi da bi zauzela svaki deo prostora u sudu, i održava relativno konstantnu gustinu. Distinktno svojstvo tečnog stanja je površinski napon,[3][4] koji dovodi do fenomena vlaženja.[11][12]

Gustina tečnosti je obično blizo gustine čvrste materije, i znatno je veća od gasa. Stoga su tečne i čvrste materije nazvanje kondenzovanim materijama.[13] S druge strane, tečnosti i gasovi imaju zajeničku sposobnost tečenja, i nazivaju se fluidima.[14] Mada je tečna voda izobilna na Zemlji, to stanje materije je zapravo najmanje zastupljeno u poznatom svemiru, pošto je za postojanje tečnosti neophodan relativno uzak opseg temperature/pritiska. Većina poznate materije u svemiru je u gasovitoj formi (sa tragovima detektabilne čvrste materije) kao interstelarni oblaci ili obliku plazme u zvezdama.

Uvod[uredi - уреди]

Termalna slika umivaonika punog tople vode kojoj se dodaje hladna voda. Prikazan je način na koji topla i hladna voda utiču jedna u drugu.

Tečnost je jedno od četiri primarna stanja materija, dok su ostala čvrsto stanje, gas i plazma. Tečnost je fluid. Za razliku od čvrste materije, molekuli tečnosti imaju znatno veći broj stepena slobode kretanja. Sile koje drže molekule tečnosti zajedno u čvrstoj materiji su samo privremene u tečnosti, što omogućava tečnosti da teče, dok čvrste materije ostaju krute.

Tečnost, poput gasa, ispoljava svojstva fluida. Tečnost može da teče, zauzima oblik suda, i ako se stavi u zatvoreni sud ravnomerno raspoređuje primenjeni pritisak na sve površine suda. Ako se tečnost stavi u kesu, njoj se može dati bilo koji željeni oblik. Za razliku od gasa, tečnosti se sa lakoćom uvek ne mešaju sa drugim tečnostima, ne popunjavaju uvek u potpunosti dostupni prostor u sudu, one formiraju svoju sopstvenu površinu, i ne podležu u znatnoj meri komprimovanju, izuzev pod ekstremno visokim pritiscima. Ta svojstva čine tečnost podesnom za primene u hidraulici.[15][16]

Čestice tečnosti su čvrsto vezane, ali one nisu krute. One imaju sposobnost slobodnog kretanja jedna oko druge, što proizvodi ograničene stepene mobilnosti čestica. sa povećanjem temperature, pojačane vibracije molekula uzrokuju povećanje rastojanja između molekula. Kad tečnost dostigne svoju tačku ključanja,[17] kohezivne sile koje blisko vezuju molekule zajedno pucaju, i tečnost prelazi u gasovito stanje (osim slučaja superzagrevanja[18]). Ako se temperatura smanjuje, rastojanje između molekula postaje manje. Kad tečnost dostigne svoju tačku smrzavanja molekuli se obično fiksiraju u veoma specifičnom uređenju,[19] i.e. dolazi do kristalizacije, i veze između njih postaju kruće, čime tečnost prelazi u čvrsto stanje (osim u slučaju superhlađenja[20][21]).

Primeri[uredi - уреди]

Jedina dva elementa koja su tečna pod standardnim uslovima temperature i pritiska su: živa i brom. Četiri dodatna elementa imaju tačke topljenja neznatno iznad sobne temperature: francijum, cezijum, galijum i rubidijum.[22] Metalne legure koje su tečne na sobnoj temperaturi su NaK, natrijum-kalijumska metalna legura, galinstan, topljiva tečna legura, i neki amalgami (legure žive).

Čiste supstance koje su tečne pod normalnim uslovima obuhvataju vodu, etanol i mnoge druge organske rastvarače. Tečna voda je od vitalnog značaja u hemiji i biologiji; smatra se da je neophodna za postojanje života.

Neorganske tečnosti obuhvataju vodu, magmu, neorganske nevodene rastvarače i mnoge kiseline.

Među važnim tečnostima u svakodnevnoj upotrebi su tečni rastvori kao što su kućni izbjeljivači, i smeše raznih supstanci kao što su mineralna ulja i benzin, emulzije kao što su prelivi ili majonez, suspenzije poput krvi, i koloidi kao što su boje i mleko.

Mnogi gasovi se mogu prevesti u tečno stanje hlađenjem, čime nastaju tečnosti kao što su tečni kiseonik, tečni azot, tečni vodonik i tečni helijum. Svi gasovi se ne mogu prevesti u tečnost na atmosferskom pritisku, na primer ugljen dioksid se može prevesti u tečnost samo na pritisku iznad 5,1 atm.

Neki materijali se ne mogu klasifikovati u okviru tri klasična stanja materije; oni poseduju svojstva slična čvrstoj materiji i tečnostima. Primeri takivih materijala su tečni kristali, koji se koriste za izradu LCD displeja, i biološke membrane.

Voda[uredi - уреди]

Najrasprostanjenija, najpoznatija, najvažnija i najneophodnija tekućina za čovjeka je voda. Ona čini oko 70% površine naše planete a i oko 65% našeg organizma tako da bez nje ne bi bilo ni života...

Rasprostranjenost voda u prirodi

Primene[uredi - уреди]

Tečnosti imaju mnoštvo upotreba, kao lubrikanti, rastvarači, i rashladne tečnosti. U hidrauličkim sistemima, tečnosti se koriste za prenos snage.

U tribologiji, tečnosti se izučavaju zbog njihovih svojstava kao lubrikanti. Lubrikanti kao što su ulja se biraju zbog njihove viskoznosti i protočnih karakteristika koje su podesne širom opsega operacione temperature date komponente. Ulja se često koriste u motorima, transmisijama, obradi metala, i hidrauličkim sistemima zbog njihovig dobrih lubrikacionih svojstava.[23]

Mnoge tečnosti se koriste kao rastvarači, za rastvaranje drugih tečnosti i čvrstih materija. Rastvori nalaze primenu u mnoštvu različitih aplikacija, uključujući boje, zaptivne smese, i lepkove. Nafta i aceton se često koriste u industriji za čišćenje ulja, maziva, i katrana sa delova i mašinerije. Telesni fluidi su rastvori bazirani na vodi.

Surfakanti su obično prisutni u sapunima i deterdžentima. Rastvarači poput alkohola se često koriste kao antimikrobni agensi. Oni nalaze primenu u kozmetici, mastilima, i tečnim obojenim laserima. Oni se koriste u prehrambenoj industriji, u procesim kao što su ekstrakcija biljnog ulja.[24]

Tečnosti obično imaju bolju termalnu provodnost od gasova, i sposobnost tečenja ih čini podesnim za uklanjanje suvišne toplote iz mehaničkih komponenti. Toplota se može ukloniti provođenjem tečnosti kroz toplotne razmenjivačje, kao što su radijatori, ili do uklanjanja toplote može doći putem isparavanja.[25] Vodeni ili glikolni rashlađivači se koriste za sprečavanje pregrevanja motora.[26] Rashlađivači koji se koriste u nuklearnim reaktorima obuhvataju vodu i tečne metale, kao što su natrijum ili bizmut.[27] Tečni propelantni filmovi se koriste za hlađenje potisnih komora raketa.[28] U mašinstvu, se koriste voda i ulje za uklanjanje suvišne toplote, koja može brzo da ošteti obrađivani deo i alat. Tokom perspiracije, znoj uklanja toplotu iz ljudskog tela putem isparavanja. U industriji zagrevanja, ventilacije, i klimatizacije (HVAC), tečnosti kao što je voda se koriste za transfer toplote sa jedne oblasti na drugu.[29]

Tečnost je primarna komponenta hidrauličnih sistema, koji funkcionišu na principu Paskalovog zakona i pružaju snagu tečnosti. Uređaji kao što su pumpe i vodeni točkovi su korišteni za preobražaj kretanja tečnosti u mehanički rad od drevnih vremena. Ulja prolaze kroz hidraulične pumpe, koje transmituju tu silu do hidrauličkih cilindara. Hidraulički uređaji imaju mnoštvo primena, kao što su automobilske kočnice i transmisije, teška oprema, i kontrolni sistemi aviona. Razne hirauličke prese se ekstenzivno koriste za popravku i proizvodnju, za podizanje i presovanje, stezanje i formiranje.[30]

Tečnosti se ponekad koriste u mernim uređajima. Termometri[31] često koriste termalnu ekspanziju tečnosti, kao što je živa, u kombinaciji sa njenom sposobnosti da teče, za indiciranje temperature.[32][33] Manometar koristi težinu tečnosti kao indikator vazdušnog pritiska.[34]

Mechanical properties[uredi - уреди]

Volume[uredi - уреди]

Quantities of liquids are commonly measured in units of volume. These include the SI unit cubic metre (m3) and its divisions, in particular the cubic decimeter, more commonly called the litre (1 dm3 = 1 L = 0.001 m3), and the cubic centimetre, also called millilitre (1 cm3 = 1 mL = 0.001 L = 10−6 m3).

The volume of a quantity of liquid is fixed by its temperature and pressure. Liquids generally expand when heated, and contract when cooled. Water between 0 °C and 4 °C is a notable exception. Liquids have little compressibility. Water, for example, will compress by only 46.4 parts per million for every unit increase in atmospheric pressure (bar).[35] At around 4000 bar (58,000 psi) of pressure, at room temperature, water only experiences an 11% decrease in volume.[36] In the study of fluid dynamics, liquids are often treated as incompressible, especially when studying incompressible flow. This incompressible nature makes a liquid suitable for transmitting hydraulic power, because very little of the energy is lost in the form of compression.[36] However, the very slight compressibility does lead to other phenomena. The banging of pipes, called water hammer, occurs when a valve is suddenly closed, creating a huge pressure-spike at the valve that travels backward through the system. Another phenomenon caused by liquid's incompressibility is cavitation, where liquid in an area of low pressure vaporizes and forms bubbles, which then collapse as they enter high pressure areas. This causes liquid to fill the cavity left by the bubble with tremendous, localized force, eroding any adjacent solid surface.[37]

Pressure and buoyancy[uredi - уреди]

Glavni članak: fluid statics

In a gravitational field, liquids exert pressure on the sides of a container as well as on anything within the liquid itself. This pressure is transmitted in all directions and increases with depth. If a liquid is at rest in a uniform gravitational field, the pressure, p, at any depth, z, is given by

p=\rho g z\,

where:

\rho\, is the density of the liquid (assumed constant)
g\, is the gravitational acceleration.

Note that this formula assumes that the pressure at the free surface is zero, and that surface tension effects may be neglected.

Objects immersed in liquids are subject to the phenomenon of buoyancy. (Buoyancy is also observed in other fluids, but is especially strong in liquids due to their high density.)

Surfaces[uredi - уреди]

Glavni članak: surface science

Unless the volume of a liquid exactly matches the volume of its container, one or more surfaces are observed. The surface of a liquid behaves like an elastic membrane in which surface tension appears, allowing the formation of drops and bubbles. Surface waves, capillary action, wetting, and ripples are other consequences of surface tension.

Free surface[uredi - уреди]

Glavni članak: Free surface

A free surface is the surface of a fluid that is subject to both zero perpendicular normal stress and parallel shear stress, such as the boundary between, e.g., liquid water and the air in the Earth's atmosphere.

Level[uredi - уреди]

The liquid level (as in, e.g., water level) is the height associated with the liquid free surface, especially when it's the top-most surface. It may be measured with a level sensor.

Flow[uredi - уреди]

Viscosity measures the resistance of a liquid which is being deformed by either shear stress or extensional stress.[38]

When a liquid is supercooled towards the glass transition, the viscosity increases dramatically. The liquid then becomes a viscoelastic medium that shows both the elasticity of a solid and the fluidity of a liquid, depending on the time scale of observation or on the frequency of perturbation.

Sound propagation[uredi - уреди]

Hence the speed of sound in a fluid is given by c = \sqrt {K/\rho} where K is the bulk modulus of the fluid, and ρ the density. To give a typical value, in fresh water c=1497 m/s at 25 °C.

Thermodinamika[uredi - уреди]

Fazni prelazi[uredi - уреди]

A typical phase diagram. The dotted line gives the anomalous behaviour of water. The green lines show how the freezing point can vary with pressure, and the blue line shows how the boiling point can vary with pressure. The red line shows the boundary where sublimation or deposition can occur.

At a temperature below the boiling point, any matter in liquid form will evaporate until the condensation of gas above reach an equilibrium. At this point the gas will condense at the same rate as the liquid evaporates. Thus, a liquid cannot exist permanently if the evaporated liquid is continually removed. A liquid at its boiling point will evaporate more quickly than the gas can condense at the current pressure. A liquid at or above its boiling point will normally boil, though superheating can prevent this in certain circumstances.

At a temperature below the freezing point, a liquid will tend to crystallize, changing to its solid form. Unlike the transition to gas, there is no equilibrium at this transition under constant pressure, so unless supercooling occurs, the liquid will eventually completely crystallize. Note that this is only true under constant pressure, so e.g. water and ice in a closed, strong container might reach an equilibrium where both phases coexist. For the opposite transition from solid to liquid, see melting.

Liquids in space[uredi - уреди]

The phase diagram explains why liquids do not exist in space or any other vacuum. Since the pressure is zero (except on surfaces or interiors of planets and moons) water and other liquids exposed to space will either immediately boil or freeze depending on the temperature. In regions of space near the earth, water will freeze if the sun is not shining directly on it and vapourize (sublime) as soon as it is in sunlight. If water exists as ice on the moon, it can only exist in shadowed holes where the sun never shines and where the surrounding rock doesn't heat it up too much. At some point near the orbit of Saturn, the light from the sun is too faint to sublime ice to water vapour. This is evident from the longevity of the ice that composes Saturn's rings.

Rastvori[uredi - уреди]

Glavni članak: solution

Liquids can display immiscibility. The most familiar mixture of two immiscible liquids in everyday life is the vegetable oil and water in Italian salad dressing. A familiar set of miscible liquids is water and alcohol. Liquid components in a mixture can often be separated from one another via fractional distillation.

Microscopic properties[uredi - уреди]

Static structure factor[uredi - уреди]

Structure of a classical monatomic liquid. Atoms have many nearest neighbors in contact, yet no long-range order is present.[38]

In a liquid, atoms do not form a crystalline lattice, nor do they show any other form of long-range order. This is evidenced by the absence of Bragg peaks in X-ray and neutron diffraction. Under normal conditions, the diffraction pattern has circular symmetry, expressing the isotropy of the liquid. In radial direction, the diffraction intensity smoothly oscillates. This is usually described by the static structure factor S(q), with wavenumber q=(4π/λ)sinθ given by the wavelength λ of the probe (photon or neutron) and the Bragg angle θ. The oscillations of S(q) express the near order of the liquid, i.e. the correlations between an atom and a few shells of nearest, second nearest, ... neighbors.

A more intuitive description of these correlations is given by the radial distribution function g(r), which is basically the Fourier transform of S(q). It represents a spatial average of a temporal snapshot of pair correlations in the liquid.

Radial distribution function of the Lennard-Jones model fluid.

Sound dispersion and structural relaxation[uredi - уреди]

The above expression for the sound velocity c = \sqrt {K/\rho} contains the bulk modulus K. If K is frequency independent then the liquid behaves as a linear medium, so that sound propagates without dissipation and without mode coupling. In reality, any liquid shows some dispersion: with increasing frequency, K crosses over from the low-frequency, liquid-like limit K_0 to the high-frequency, solid-like limit K_\infty. In normal liquids, most of this cross over takes place at frequencies between GHz and THz, sometimes called hypersound.

At sub-GHz frequencies, a normal liquid cannot sustain shear waves: the zero-frequency limit of the shear modulus is G_0=0. This is sometimes seen as the defining property of a liquid.[39][40] However, just as the bulk modulus K, the shear modulus G is frequency dependent, and at hypersound frequencies it shows a similar cross over from the liquid-like limit G_0 to a solid-like, non-zero limit G_\infty.

According to the Kramers-Kronig relation, the dispersion in the sound velocity (given by the real part of K or G) goes along with a maximum in the sound attenuation (dissipation, given by the imaginary part of K or G). According to linear response theory, the Fourier transform of K or G describes how the system returns to equilibrium after an external perturbation; for this reason, the dispersion step in the GHz..THz region is also called structural relaxation. According the fluctuation-dissipation theorem, relaxation towards equilibrium is intimately connected to fluctuations in equilibrium. The density fluctuations associated with sound waves can be experimentally observed by Brillouin scattering.

On supercooling a liquid towards the glass transition, the crossover from liquid-like to solid-like response moves from GHz to MHz, kHz, Hz, ...; equivalently, the characteristic time of structural relaxation increases from ns to μs, ms, s, ... This is the microscopic explanation for the above-mentioned viscoelastic behaviour of glass-forming liquids.

Effects of association[uredi - уреди]

The mechanisms of atomic/molecular diffusion (or particle displacement) in solids are closely related to the mechanisms of viscous flow and solidification in liquid materials. Descriptions of viscosity in terms of molecular "free space" within the liquid[41] were modified as needed in order to account for liquids whose molecules are known to be "associated" in the liquid state at ordinary temperatures. When various molecules combine together to form an associated molecule, they enclose within a semi-rigid system a certain amount of space which before was available as free space for mobile molecules. Thus, increase in viscosity upon cooling due to the tendency of most substances to become associated on cooling.[42]

Similar arguments could be used to describe the effects of pressure on viscosity, where it may be assumed that the viscosity is chiefly a function of the volume for liquids with a finite compressibility. An increasing viscosity with rise of pressure is therefore expected. In addition, if the volume is expanded by heat but reduced again by pressure, the viscosity remains the same.

The local tendency to orientation of molecules in small groups lends the liquid (as referred to previously) a certain degree of association. This association results in a considerable "internal pressure" within a liquid, which is due almost entirely to those molecules which, on account of their temporary low velocities (following the Maxwell distribution) have coalesced with other molecules. The internal pressure between several such molecules might correspond to that between a group of molecules in the solid form.

Reference[uredi - уреди]

  1. M.A. Wahab (2005). Solid State Physics: Structure and Properties of Materials. Alpha Science. str. 1–3. ISBN 1-84265-218-4. 
  2. Cutnell, John D.; Kenneth W. Johnson (2006). Essentials of Physics. Wiley Publishing. 
  3. 3.0 3.1 Roger P. Woodward, Ph.D. "Surface Tension Measurements Using the Drop Shape Method" (PDF). First Ten Angstroms. Retrieved 2008-11-05. 
  4. 4.0 4.1 F.K.Hansen; G. Rodsrun (1991). "Surface tension by pendant drop. A fast standard instrument using computer image analysis". Colloid and Interface Science 141: 1–12. doi:10.1016/0021-9797(91)90296-K. 
  5. Peter Atkins, Julio de Paula (2001). Physical Chemistry (7th edition izd.). W. H. Freeman. ISBN 0716735393. 
  6. Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements (New izd.). New York, NY: Oxford University Press. ISBN 978-0-19-960563-7. 
  7. Fine, Rana A.; Millero, F. J. (1973). "Compressibility of water as a function of temperature and pressure". Journal of Chemical Physics 59 (10): 5529–5536. Bibcode:1973JChPh..59.5529F. doi:10.1063/1.1679903. 
  8. Hugh D. Young; Roger A. Freedman. University Physics with Modern Physics. Addison-Wesley; 2012. ISBN 978-0-321-69686-1. p. 356.
  9. Donald A. McQuarrie, John D. Simon (1997). Physical Chemistry: A Molecular Approach (1st edition izd.). University Science Books. ISBN 0935702997. http://pubs.acs.org/doi/abs/10.1021/ed075p545. 
  10. Volland, Dr. Walt. ""Intermolecular" Forces". http://www.800mainstreet.com/08/0008-0012-interforce.html. pristupljeno 20. 9. 2009.. 
  11. Dezellus, O. and N. Eustathopoulos (2010). "Fundamental issues of reactive wetting by liquid metals." Journal of Materials Science 45(16): 4256-4264.
  12. Han Hu, Hai-Feng Ji, and Ying Sun, Phys. Chem. Chem. Phys., 15, (2013) 16557
  13. Taylor, Philip L. (2002). A Quantum Approach to Condensed Matter Physics. Cambridge University Press. ISBN 0-521-77103-X. http://books.google.com/?id=hyx6BjEX4U8C&pg=PR9. 
  14. Bird, Byron; Stewart, Warren; Lightfoot, Edward (2007). Transport Phenomena. New York: Wiley, Second Edition. str. 912. ISBN 0-471-41077-2. 
  15. Horst Beer: 100 Jahre Entwicklung und Einsatz der Hydraulik im Osten Deutschlands. Ein Beitrag zur Technik- und Industriegeschichte. GNN-Verlag, Schkeuditz 2008, ISBN 978-3-89819-240-8.
  16. H. Exner, R. Freitag, H. Geis, R. Lang. J. Oppolzer: Der Hydraulik Trainer. Band 1: Hydraulik – Grundlagen und Komponenten. . 3. überarbeitete Auflage. Herausgegeben von Bosch Rexroth AG. Mannesmann Rexroth, Lohr 2002, ISBN 3-933698-30-8.
  17. Goldberg, David E. (1988). 3,000 Solved Problems in Chemistry (1st izd.). McGraw-Hill. section 17.43, p. 321. ISBN 0-07-023684-4. 
  18. Atmosphere-ocean Interaction By Eric Bradshaw Kraus, Joost A. Businger Published by Oxford University Press US, 1994 ISBN 0-19-506618-9, pg 60.
  19. Haynes, William M., ur. (2011). CRC Handbook of Chemistry and Physics (92nd ed. izd.). CRC Press. ISBN 1439855110. 
  20. Debenedetti, P. G.; Stanley, H. E. (2003). "Supercooled and Glassy Water" (PDF). Physics Today 56 (6): 40–46. Bibcode:2003PhT....56f..40D. doi:10.1063/1.1595053. 
  21. Giovambattista, N.; Angell, C. A.; Sciortino, F.; Stanley, H. E. (July 2004). "Glass-Transition Temperature of Water: A Simulation Study" (PDF). Physical Review Letters 93 (4): 047801. arXiv:cond-mat/0403133. Bibcode:2004PhRvL..93d7801G. doi:10.1103/PhysRevLett.93.047801. PMID 15323794. 
  22. Theodore Gray, The Elements: A Visual Exploration of Every Known Atom in the Universe New York: Workman Publishing, 2009 p. 127 ISBN 1-57912-814-9
  23. Theo Mang, Wilfried Dressel ’’Lubricants and lubrication’’, Wiley-VCH 2007 ISBN 3-527-31497-0
  24. George Wypych ’’Handbook of solvents’’ William Andrew Publishing 2001 pp. 847–881 ISBN 1-895198-24-0
  25. N. B. Vargaftik ’’Handbook of thermal conductivity of liquids and gases’’ CRC Press 1994 ISBN 0-8493-9345-0
  26. Jack Erjavec ’’Automotive technology: a systems approach’’ Delmar Learning 2000 p. 309 ISBN 1-4018-4831-1
  27. Gerald Wendt ’’The prospects of nuclear power and technology’’ D. Van Nostrand Company 1957 p. 266
  28. ’’Modern engineering for design of liquid-propellant rocket engines’’ by Dieter K. Huzel, David H. Huang – American Institute of Aeronautics and Astronautics 1992 p. 99 ISBN 1-56347-013-6
  29. Thomas E Mull ’’HVAC principles and applications manual’’ McGraw-Hill 1997 ISBN 0-07-044451-X
  30. R. Keith Mobley Fluid power dynamics Butterworth-Heinemann 2000 p. vii ISBN 0-7506-7174-2
  31. Middleton, W.E.K. (1966). A history of the thermometer and its use in meteorology. Baltimore: Johns Hopkins Press. Reprinted ed. 2002, ISBN 0-8018-7153-0.
  32. T.D. McGee (1988) Principles and Methods of Temperature Measurement ISBN 0-471-62767-4
  33. T.D. McGee (1988) Principles and Methods of Temperature Measurement page 3, ISBN 0-471-62767-4
  34. Bela G. Liptak ’’Instrument engineers’ handbook: process control’’ CRC Press 1999 p. 807 ISBN 0-8493-1081-4
  35. Compressibility of Liquids
  36. 36.0 36.1 Intelligent Energy Field Manufacturing: Interdisciplinary Process Innovations By Wenwu Zhang -- CRC Press 2011 Page 144
  37. Fluid Mechanics and Hydraulic Machines by S. C. Gupta -- Dorling-Kindersley 2006 Page 85
  38. 38.0 38.1 F. White (2003). Fluid Mechanics. McGraw-Hill. str. 4. ISBN 0-07-240217-2. 
  39. Born, Max (1940). "On the stability of crystal lattices". Mathematical Proceedings (Cambridge Philosophical Society) 36 (2): 160–172. doi:10.1017/S0305004100017138. 
  40. Born, Max (1939). "Thermodynamics of Crystals and Melting". Journal of Chemical Physics 7 (8): 591–604. doi:10.1063/1.1750497. 
  41. D.B. Macleod (1923). "On a relation between the viscosity of a liquid and its coefficient of expansion". Trans. Farad. Soc. 19: 6. doi:10.1039/tf9231900006. 
  42. G.W Stewart (1930). "The Cybotactic (Molecular Group) Condition in Liquids; the Association of Molecules". Phys. Rev. 35 (7): 726. Bibcode:1930PhRv...35..726S. doi:10.1103/PhysRev.35.726. 

Literatura[uredi - уреди]

  • J. P. Hansen, I. R. Mcdonald: Theory of simple Liquids. Elsevier Academic Press, 2006, ISBN 978-0-12-370535-8
  • M. P. Allen, D.J. Tildesly: Computer Simulation of Liquids. Oxford University Press, 1989, ISBN 0-19-855645-4

Vanjske veze[uredi - уреди]