CXCL1

Izvor: Wikipedija
Prijeđi na navigaciju Prijeđi na pretragu
edit
Hemokin (C-X-C motiv) ligand 1 (melanom rast stimulišuća aktivnost, alfa)

PDB prikaz baziran na 1mgs.
Dostupne strukture
1mgs, 1msg, 1msh
Identifikatori
SimboliCXCL1; GRO1; GROa; MGSA; MGSA alpha; MGSA-a; NAP-3; SCYB1
Vanjski IDOMIM155730 MGI3037818 HomoloGene84701 GeneCards: CXCL1 Gene
Ortolozi
VrstaČovekMiš
Entrez2919330122
EnsemblENSG00000163739ENSMUSG00000029379
UniProtP09341n/a
RefSeq (mRNA)NM_001511NM_203320
RefSeq (protein)NP_001502NP_976065
Lokacija (UCSC)Chr 4:
74.95 - 74.97 Mb
Chr 5:
91.86 - 91.86 Mb
PubMed pretraga[1][2]

CXCL1, hemokin (C-X-C motiv) ligand 1, je mali citokin koji pripada CXC hemokin familiji. On se ranije zvao GRO1 onkogen, GROα, KC, neutrofil-aktivirajući protein 3 (NAP-3) i melanoma rast stimulišuća aktivnost, alfa (MSGA-α). Kod ljudi, ovaj protein je kodiran CXCL1 genom.[1][2]

Funkcija[uredi | uredi kod]

CXCL1 izlučuju ljudske ćelije melanoma. On ima mitogene osobine i učestvuje u patogenezi melanoma.[3][4] CXCL1 izražavaju makrofage, neutrofili i epitelske ćelije,[5][6] i dejstvuje kao neutrofilni hemoatraktant.[7][8] CXCL1 igra ulogu u razvoju kičmene moždine putem inhibicije migracije oligodendrocit prekursora, i učestvuje u procesima angiogeneze, inflamacije, zarastanja rana, i tumorigeneze.[9][10][11][12]

Ovaj hemokin dejstvuje putem signaliziranja kroz hemokin receptor CXCR2.[9] Gen za CXCL1 je lociran na ljudskom hromozomu 4 među genima za drugih CXC hemokina.[13] Jedna početna studija na miševima je proizvela evidenciju da CXCL1 umanjuje težinu multiple skleroze i da možda može da ima neuroprotektivnu ulogu.[14]

Reference[uredi | uredi kod]

  1. Haskill S, Peace A, Morris J, Sporn SA, Anisowicz A, Lee SW, Smith T, Martin G, Ralph P, Sager R (October 1990). „Identification of three related human GRO genes encoding cytokine functions”. Proc. Natl. Acad. Sci. U.S.A. 87 (19): 7732–6. DOI:10.1073/pnas.87.19.7732. PMC 54822. PMID 2217207. 
  2. Mire-Sluis, Anthony R.; Thorpe, Robin, ur. (1998). Cytokines (Handbook of Immunopharmacology). Boston: Academic Press. ISBN 0-12-498340-5. 
  3. Anisowicz A, Bardwell L, Sager R (October 1987). „Constitutive overexpression of a growth-regulated gene in transformed Chinese hamster and human cells”. Proc. Natl. Acad. Sci. U.S.A. 84 (20): 7188–92. DOI:10.1073/pnas.84.20.7188. PMC 299255. PMID 2890161. 
  4. Richmond A, Thomas HG (February 1988). „Melanoma growth stimulatory activity: isolation from human melanoma tumors and characterization of tissue distribution”. J. Cell. Biochem. 36 (2): 185–98. DOI:10.1002/jcb.240360209. PMID 3356754. 
  5. Iida N, Grotendorst GR (October 1990). „Cloning and sequencing of a new gro transcript from activated human monocytes: expression in leukocytes and wound tissue”. Mol. Cell. Biol. 10 (10): 5596–9. PMC 361282. PMID 2078213. 
  6. Becker S, Quay J, Koren HS, Haskill JS (March 1994). „Constitutive and stimulated MCP-1, GRO alpha, beta, and gamma expression in human airway epithelium and bronchoalveolar macrophages”. Am. J. Physiol. 266 (3 Pt 1): L278–86. PMID 8166297. 
  7. Moser B, Clark-Lewis I, Zwahlen R, Baggiolini M (May 1990). „Neutrophil-activating properties of the melanoma growth-stimulatory activity”. J. Exp. Med. 171 (5): 1797–802. DOI:10.1084/jem.171.5.1797. PMC 2187876. PMID 2185333. 
  8. Schumacher C, Clark-Lewis I, Baggiolini M, Moser B (November 1992). „High- and low-affinity binding of GRO alpha and neutrophil-activating peptide 2 to interleukin 8 receptors on human neutrophils”. Proc. Natl. Acad. Sci. U.S.A. 89 (21): 10542–6. DOI:10.1073/pnas.89.21.10542. PMC 50375. PMID 1438244. 
  9. 9,0 9,1 Tsai HH, Frost E, To V, Robinson S, Ffrench-Constant C, Geertman R, Ransohoff RM, Miller RH (August 2002). „The chemokine receptor CXCR2 controls positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration”. Cell 110 (3): 373–83. DOI:10.1016/S0092-8674(02)00838-3. PMID 12176324. 
  10. Devalaraja RM, Nanney LB, Du J, Qian Q, Yu Y, Devalaraja MN, Richmond A (August 2000). „Delayed wound healing in CXCR2 knockout mice”. J. Invest. Dermatol. 115 (2): 234–44. DOI:10.1046/j.1523-1747.2000.00034.x. PMC 2664868. PMID 10951241. 
  11. Haghnegahdar H, Du J, Wang D, Strieter RM, Burdick MD, Nanney LB, Cardwell N, Luan J, Shattuck-Brandt R, Richmond A (January 2000). „The tumorigenic and angiogenic effects of MGSA/GRO proteins in melanoma”. J. Leukoc. Biol. 67 (1): 53–62. PMC 2669312. PMID 10647998. [mrtav link]
  12. Owen JD, Strieter R, Burdick M, Haghnegahdar H, Nanney L, Shattuck-Brandt R, Richmond A (September 1997). „Enhanced tumor-forming capacity for immortalized melanocytes expressing melanoma growth stimulatory activity/growth-regulated cytokine beta and gamma proteins”. Int. J. Cancer 73 (1): 94–103. DOI:10.1002/(SICI)1097-0215(19970926)73:1<94::AID-IJC15>3.0.CO;2-5. PMID 9334815. 
  13. Richmond A, Balentien E, Thomas HG, Flaggs G, Barton DE, Spiess J, Bordoni R, Francke U, Derynck R (July 1988). „Molecular characterization and chromosomal mapping of melanoma growth stimulatory activity, a growth factor structurally related to beta-thromboglobulin”. EMBO J. 7 (7): 2025–33. PMC 454478. PMID 2970963. 
  14. Omari KM, Lutz SE, Santambrogio L, Lira SA, Raine CS (January 2009). „Neuroprotection and remyelination after autoimmune demyelination in mice that inducibly overexpress CXCL1”. Am. J. Pathol. 174 (1): 164–76. DOI:10.2353/ajpath.2009.080350. PMC 2631329. PMID 19095949.