Hemijska biologija
Prijeđi na navigaciju
Prijeđi na pretragu
Hemijska biologija je naučna disciplina koja delom obuhvata polja hemije, biologije i fizike. Ona se bavi primenom hemijkih tehnika, oruđa i analiza, kao i sintetičkih jedinjenja, u izučavanju i manipulaciji bioloških sistema. Hemijska biologija koristi hemijske principe u istraživanju bioloških sistema i razvoju novih funkcija tih sistema. Hemijsko biološka istraživanja često imaju više srodnosti sa citologijom nego sa biohemijom. Biohemija izučava hemiju biomolekula i regulaciju biohemijskih puteva u ćelijama i tkivima, npr. cAMP ili cGMP, dok je fokus hemijske biologije na biološkoj primeni novih hemijskih jedinjenja.[1][2]
- ↑ Herbert Waldmann, Petra Janning (2009). Chemical Biology (1st izd.). Wiley-VCH. ISBN 3527323309.
- ↑ Andrew D. Miller, Julian Tanner (2008). Essentials of Chemical Biology: Structure and Dynamics of Biological Macromolecules (1st izd.). Wiley. ISBN 0470845317.
- Andrew D. Miller, Julian Tanner (2008). Essentials of Chemical Biology: Structure and Dynamics of Biological Macromolecules (1st izd.). Wiley. ISBN 0470845317.
- Herbert Waldmann, Petra Janning (2009). Chemical Biology (1st izd.). Wiley-VCH. ISBN 3527323309.
- Dertinger S. K. W., Chiu D. T., Jeon N. L., Whitesides G. M. (2001). „Generation of gradients having complex shapes using microfluidic networks”. Analytical Chemistry 73: 1240–1246.
- Greif D, Pobigaylo N, Frage B, Becker A, Regtmeier J, Anselmetti D (2010). „Space- and time-resolved protein dynamics in single bacterial cells observed on a chip”. Journal of Biotechnology 149 (4): 280–288. DOI:10.1016/j.jbiotec.2010.06.003. PMID 20599571.
- Li L, Ismagilov RF (2010). „Protein crystallization using microfluidic technologies based on valves, droplets, and SlipChip”. Annu Rev Biophys 39: 139–58. DOI:10.1146/annurev.biophys.050708.133630. PMID 20192773.
- Lucchetta EM, Lee JH, Fu LA, Patel NH, Ismagilov RF (2005). „Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics”. Nature 434 (7037): 1134–1138. Bibcode 2005Natur.434.1134L. DOI:10.1038/nature03509. PMC 2656922. PMID 15858575.
- Melin J, Quake SR (2007). „Microfluidic large-scale integration: The evolution of design rules for biological automation”. Annual Review of Biophysics and Biomolecular Structure 36: 213–231. DOI:10.1146/annurev.biophys.36.040306.132646. PMID 17269901.
- Shen F, Du WB, Kreutz JE, Fok A, Ismagilov RF (2010). „Digital PCR on a SlipChip”. Lab on a Chip 10 (20): 2666–2672. DOI:10.1039/c004521g. PMC 2948063. PMID 20596567.
- Song H., Chen D. L., Ismagilov R. F. (2006). „Reactions in droplets in microflulidic channels”. Angewandte Chemie-International Edition 45: 7336–7356.
- Spiller DG, Wood CD, Rand DA, White MRH (2010). „Measurement of single-cell dynamics”. Nature 465 (7299): 736–745. Bibcode 2010Natur.465..736S. DOI:10.1038/nature09232. PMID 20535203.
- Tice JD, Song H, Lyon AD, Ismagilov RF (2003). „Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers”. Langmuir 19 (22): 9127–9133. DOI:10.1021/la030090w.
- Vincent ME, Liu WS, Haney EB, Ismagilov RF (2010). „Microfluidic stochastic confinement enhances analysis of rare cells by isolating cells and creating high density environments for control of diffusible signals”. Chemical Society Reviews 39 (3): 974–984. DOI:10.1039/b917851a. PMC 2829723. PMID 20179819.
- Weibel DB, Whitesides GM (2006). „Applications of microfluidics in chemical biology”. Current Opinion in Chemical Biology 10 (6): 584–591. DOI:10.1016/j.cbpa.2006.10.016. PMID 17056296.
- Whitesides GM (2006). „The origins and the future of microfluidics”. Nature 442 (7101): 368–373. Bibcode 2006Natur.442..368W. DOI:10.1038/nature05058. PMID 16871203.
- Young EWK, Beebe DJ (2010). „Fundamentals of microfluidic cell culture in controlled microenvironments”. Chemical Society Reviews 39 (3): 1036–1048. DOI:10.1039/b909900j. PMC 2967183. PMID 20179823.