Karakteristični polinom

Iz Wikipedije, slobodne enciklopedije

Karakteristični polinom kvadratne matrice A reda n je polinom koji se dobije izračunavanjem determinante karakteristične matrice tIn-A, gdje je In kvadratna jedinična matrica reda n, a t je neodređen.


Karakteristični polinom je od koristi za izračunavanje nekoliko važnih svojstava matrice, kao što su svojstvene vrijednosti. Nule karakterističnog polinoma su svojstvene vrijednosti matrice.

Primjer[uredi - уреди | uredi izvor]

Recimo da želimo izračunati karakteristični polinom matrice

Trebamo izračunati determinantu od

a ona je

Ovo je karakteristični polinom od A.

Svojstva[uredi - уреди | uredi izvor]

Svi realni polinomi neparnog stupnja imaju bar jedan realan broj kao korijen, tako da za neparno n svaka realna matrica ima najmanje jednu svojstvenu vrijednost. Mnogi realni polinomi parnog stupnja nemaju realni korijen, ali osnovni stavak algebre tvrdi da svaki polinom stupnja n ima n kompleksnih korijena.

Slične matrice imaju iste karakteristične polinome. Međutim, dvije matrice koje imaju iste karakteristične polinome ne moraju nužno biti slične. Matrica A i transponirana matrica AT imaju iste karakteristične polinome.

Cayley-Hamiltonov teorem tvrdi da ako ubacimo A u karakteristični polinom pA(t) dobivamo nul-matricu:

.

Jednostavno, svaka matrica zadovoljava svoju karakterističnu jednadžbu. Kao posljedicu ovoga, možemo pokazati da minimalni polinom od A dijeli karakteristični polinom od A.