Funkcija

Izvor: Wikipedija
(Preusmjereno sa stranice Funkcija (matematika))
Prijeđi na navigaciju Prijeđi na pretragu
Za ostala značenja, vidi Funkcija (razvrstavanje).

Funkcija je, uopšte, pravilo pridruživanja jednog elementa iz skupa H (domen funkcije) drugom iz skupa U (kodomen funkcije). Za zapisivanje funkcija koristimo oznake kao što je ili a prirodu skupova koji učestvuju opisujemo frazama kakva je na primer: funkcija realne promenljive. Opseg, raspon ili područje definicije funkcije f je skup vrednosti, f(x), za x iz domena f.

Definicije

[uredi | uredi kod]

Funkcija je jedan od osnovnih pojmova matematike. Posebno pogledajte: Analitička funkcija, Grafik funkcije, Neprekidna funkcija, Trigonometrijske funkcije, Hiperboličke funkcije. Definicija funkcije kao promenljive veličine je nesavršena jer se pri tome koristi nestrogi pojam promenljive veličine i zato se obično koristi savremeniji pristup ovom problemu preko teorije skupova.

Analitička definicija

[uredi | uredi kod]

Ako dve promenljive količine stoje u takvoj vezi da se menjanjem vrednosti jedne količine menja vrednost i druge, onda je druga funkcija prve.

Osnovna karakteristika funkcije je da za jednu ulaznu vrednost dobija najviše jedna izlazna vrednost.

Funkcija može imati više promenljivih.

Definicije iz teorije skupova

[uredi | uredi kod]

Skup se u matematici uzima za osnovni pojam. Dekartov proizvod skupova je skup uređenih parova. Uređeni par elemenata čine bilo kakva dva elementa kod kojih se, iz bilo kojih razloga, zna koji od njih je prvi, a koji drugi. Zatim, relacija (matematika) je neprazan podskup Dekartovog proizvoda skupova, i konačno, funkcija je jedna vrsta relacije, slika desno. Na slici desno, pre svega, data je relacija Zašto takvu relaciju nazivamo i funkcija?

Definicija
Neka su A i B neprazni skupovi. Tada se binarna relacija zove funkcija ili preslikavanje iz A u B, ako važi

Poslednji izraz je formula napisana pomoću kvantora svaki (obrnuto slovo A) i postoji tačno jedan (obrnuto E sa uzvičnikom) koja se čita: "za svako iks iz A postoji tačno jedno ipsilon iz Be takvo da je y=f(x)". To znači da na grafu, desno, iz svakog od elemenata skupa polazi po tačno jedna strelica, koja predstavlja (po tačno jedan) uređeni par (za svako od slova ) Drugim rečima, funkcija je takva vrsta relacije gde je svaki elemenat jednog od skupova tačno po jednom prvi.

Druga, ekvivalentna definicija: binarna relacija f iz A u B je funkcija ako je

Ova definicija postavlja isti kriterijum: ako su originali jednaki (h=h) tada su i kopije jednake (y=z). Dakle, ne može isti original proizvesti različite kopije!

Elementi skupa A nazivaju se argumenti, nezavisno promenljive, originali preslikavanja, likovi, ili elementi domena. Skup A je skup prvih elemenata uređenih parova, na grafu to je polazni skup strelice, naziva se domen, područje vrednosti (rang), itd. funkcije f. Skup B naziva se kodomen (kontradomen) funkcije, skup kopija, slika, itd. Često se domen funkcije f označava sa , a kodomen ponekad Na navedenom grafu je i f je funkcija sa A u B, što pišemo ili Često umesto stavljamo , pa je

Definicija
Funkcija zove se surjekcija, ili "na"-preslikavanje, ako je

Pomoću kvantora tu istu definiciju pišemo: Jednostavnije rečeno, funkcija je surjekcija ako i samo ako su svi elementi desnog skupa (B) nečije slike. Na gornjem grafu ka elementu γ ne ide niti jedna strelica. Prema tome, data funkcija nije surjekcija. Surjekcija po definiciji dozvoljava „duple kopije“.

Definicija
Funkcija zove se injekcija, ili "1-1"-preslikavanje, ako važi

To je definicija po formi obrnuta onoj drugoj definiciji funkcije: ista kopija ne može biti rezultat kopiranja različitih originala. Na datom grafu, elemenat β je kopija dva originala i prema tome data funkcija f nije injekcija. Injekcija po definiciji dozvoljava da u skupu kopija postoje elementi koji uopšte nisu rezultat preslikavanja.

Definicija
Funkcija koja je surjekcija i injekcija zove se bijekcija.

Bijekciju nazivamo i obostrano jednoznačno preslikavanje.

Teškoće prve teorije skupova

[uredi | uredi kod]

Bijekcija je odigrala važnu ulogu u razmatranju pojma beskonačnosti i njemu srodnih pojmova. Ako postoje dva skupa i makar jedna funkciju među njima koja je bijekcija onda ta dva skupa imaju isti broj elemenata. To znači da ako za dva beskonačna skupa, recimo brojeva, pronađemo bar jedno bijektivno preslikavanje među njima, tada kažemo da oni imaju jednako mnogo elemenata. To je jedna od osnovnih ideja osnivača teorije skupova Kantora i Dedekinda.

Početnu ideju skupova je ubrzo, početkom 20. veka, uzdrmao britanski matematičar i filozof, Bertran Rasel, našavši nekoliko nedoslednosti u Kantorovoj teoriji. Danas se te nedoslednosti obično nazivaju paradoksima teorije skupova. Rasel je ukazao na paradoks praznog skupa, koji je razrešen zahtevom da je prazan skup podskup svakog skupa. Njegov drugi paradoks je paradoks skupa svih skupova. Ideja skupa svih skupova je kontradiktorna, tako da današnja teorija skupova, jednostavno, ne zahteva postojanje sveobuhvatnog, "univerzalnog skupa".

Ispitivanje toka funkcije

[uredi | uredi kod]

Ispitati tok funkcije znači oidrediti sljedeće

Područje definicije

[uredi | uredi kod]

Za određivanje područja definicije funkcije potrebno je poznavati elementarne funkcije

Parnost

[uredi | uredi kod]

Parnost funkcije provjerava se pomoću definicije:

Funkcija je parna ako je za svaki , a neparna ako je ) za svaki .

Kod parne i neparne funkcije područje definicije mora biti simetrično u odnosu na koordinantni početak .

Primjer

je parna za paran, a neparna za neparan pa je:

.

Funkcija je parna: ako je , tada je pa vrijedi

Za je pa vrijedi

Periodičnost

[uredi | uredi kod]

Periodičnost funkcije provjerava se pomoću definicije

Funkcija je periodična ako postoji broj takav da za svaki vrijedi

Tada mora vrijediti . Najmanji takav pozitivni broj osnovni period ili period funkcije .

Primjeri periodičnih funkcija su trigonometrijske funkcije.

Elementarna funkcija ne može biti periodićna ako ne sadrži neku od trigonometrijskih funkcija.

Nula funkcije

[uredi | uredi kod]

Nula funkcije određuju se rješavanjem jednačine

Asimptote funkcije

[uredi | uredi kod]

Asimptote mogu biti vertikalne, horizontalne i kose. Određuju se nalaženjem limesa i L'Hospitalovim pravilo, ako je potrebno.

Asimptota funkcije je prava sa osobinom da udaljenost između tačke na grafiku funkcije i te prave teži ka nuli ) kada tačka na grafiku odmiće u beskonačnost.

Prava je vertikalna asimptota funkcije u tački s lijeve strane ako je ili .

Prava je vertikalna asimptota funkcije u tacki s desne strane ako je

ili

.

Vertikalne asimptote se mogu nalaziti u tačkama prekida funkcije ili u otvorenim rubovima područja definicije.

Primjer

Prava je vertikalna asimptota funkcije s obje strane.

Prava je vertikalna asimptota funkcija , i s desne strane. U ovom slučaju vertikalna asimptota se nalazi u rubu područja definicije.

Prava je horizontalna asimptota funkcije na lijevoj strani ako je . Prava je horizontalna asimptota funkcije na desnoj strani ako je .

Primjer

Prava je horizontalna asimptota funkcije na obje strane, kao i horizontalna asimptota funkcija i na lijevoj strani.

Ako je

pri čemu je

tada je prava kosa asimptota funkcije sa lijeve strane.

Kosu asimptotu funkcije sa desne strane definišemo analogno.

Udaljenost od tačke na krivoj do asimptote je . Prema definiciji asimptote kada . Kako je konstanta, zaključujemo da .

Zadnji uslov, koji je ekvivalentan sa

je nužan i dovoljan uslov za postojanje kose asimptote.

Gornja jednakost je ekvivalentna sa

.

pa je

.

Pri tome treba voditi računa o sljedećem:

  1. kod traženja horizontalnih i kosih asimptota limese kada i kada
  2. asimptote je najbolje tražiti u opisanom redosljedu, uvijek treba računati posebno
  3. treba biti oprezan u slučaju parnih korjena kada ,
Primjer

.

Ekstremi funkcije

[uredi | uredi kod]

Kod određivanja ekstrema funkcije potrebno je provjeriti nžzne i dovoljne uslove ekstrema.

Provjera nužnih uslova vrši se po teoremi

Neka je funkcija neprekidna u tački . Ako funkcija ima lokalni ekstrem u tački , tada je kritična tačka funkcije .

Potrebno je nači stacionarne i kritične tačke po definiciji

Neka je funkcija neprekidna u tački . Tačka je stacionarna tačka funkcije ako je . Tačka je kritična tačka funkcije ako je stacionarna tačka ili ako nije diferencijabilna u tački .

Tj. potrebno je odrediti područje definicije prvog izvoda i riješiti jednačinu . Provjera dovoljnih uslova može se vršiti na tri nacina:

pomoću promjene predznaka prvog izvoda na osnovu teoreme

Ako prvi izvod mijenja predznak u kritičnoj tački , tada funkcija ima lokalni ekstrem u tački . Pri tome vrijedi sljedeće
ako mijenja predznak sa na , tada je lokalni minimum, a ako mijenja predznak sa na , tada je lokalni maksimum.

pomoću drugog izvoda na osnovu teoreme

Neka je u stacionarnoj tački funkcija dva puta diferencijabilna. Ako je , tada funkcija ima lokalni ekstrem u tacki . Pri tome vrijedi sljedeće
ako je , tada je lokalni minimum, a ako je , tada je lokalni maksimum.

pomoću viših izvoda na osnovu teoreme

Neka funkcija ima u nekoj -okolini tačke c neprekidnog izvoda do uključivo reda , pri čemu je .
Neka je
Ako je neparan, tada funkcija ima infleksiju u tački . Ako je paran i ako je uz to još i , tada funkcija ima lokalni ekstrem u tački i to minimum za i maksimum za .

Intervali monotonosti

[uredi | uredi kod]

Posto smo načli prvi izvod funkcije intervale monotonosti određujemo određujuci predznak od na osnovu teoreme

Neka je funkcija diferencijabilna na intervalu . Tada vrijedi
  1. funkcija je rastuća na intervalu ako i samo ako je za svaki
  2. Funkcija je opadajuća na intervalu ako i samo ako je za svaki
  3. Ako je za svaki , tada je funkcija strogo rastuća na intervalu
  4. Ako je za svaki , tada je funkcija strogo opadajuća na intervalu .

Konkavnost i konveksnost funkcije

[uredi | uredi kod]

Potrebno je odrediti drugi izvod ,a onda intervale konveksnosti i konkavnosti pomoću teoreme

Neka je funkcija dva puta deiferencijabilna na intervalu . Ako je za svaki , tada je funkcija strogo konveksna na intervalu . Ako je za svaki , tada je funkcija strogo konkavna na intervalu .

Tačke infleksije

[uredi | uredi kod]

Potrebno je naći tačke u kojima drugi izvod mijenja predznak, odnosno tačke koje ispunjavaju dovoljne uslove infleksije po teoremi

Neka je funkcija dva puta deferencijabilna na nekoj -okolini tačke , osim možda u tački . Ako mijenja predznak u tački , tada funkcija ima infleksiju u tački .

Za provjeru dovoljnih uslova infleksije možemo koristiti i više izvode na osnovu teoreme

Neka funkcija ima u nekoj - okolini tačke neprekidne izvode do uključivo reda , pri čemu je . Neka je
Ako je neparan, tada funkcija ima infleksiju u tački .
Ako je paran i ako je uz to još i , tada funkcija ima lokalni ekstrem u tacki i to minimum za i maksimum za .

U tom slučaju potrebno je prvo naci tačke u kojima je drugi izvod jednak nuli, odnosno tačke koje zadovoljavaju nužan uslov infleksije po teoremi

Ako funkcija ima infleksiju u tački i ako postoji, tada je .

Graf funkcije

[uredi | uredi kod]

Grafik funkcije se crta na osnovu dobijenih informacija.

Eksterni linkovi

[uredi | uredi kod]