Funkcija

Izvor: Wikipedia
Disambig.svg Za ostala značenja v. Funkcija (razvrstavanje).

Funkcija je, uopšte, pravilo pridruživanja jednog elementa iz skupa H (domen funkcije) drugom iz skupa U (kodomen funkcije). Za zapisivanje funkcija koristimo oznake kao što je f:X\rightarrow Y, ili y=f(x), a prirodu skupova koji učestvuju opisujemo frazama kakva je na primer: funkcija realne promenljive. Opseg, raspon ili područje definicije funkcije f je skup vrednosti, f(x), za x iz domena f.

Definicije[uredi - уреди]

Funkcija je jedan od osnovnih pojmova matematike. Posebno pogledajte: Analitička funkcija, Grafik funkcije, Neprekidna funkcija, Trigonometrijske funkcije, Hiperboličke funkcije. Definicija funkcije kao promenljive veličine je nesavršena jer se pri tome koristi nestrogi pojam promenljive veličine i zato se obično koristi savremeniji pristup ovom problemu preko teorije skupova.

Analitička definicija[uredi - уреди]

Ako dve promenljive količine stoje u takvoj vezi da se menjanjem vrednosti jedne količine menja vrednost i druge, onda je druga funkcija prve.

Osnovna karakteristika funkcije je da za jednu ulaznu vrednost dobija najviše jedna izlazna vrednost.

Funkcija može imati više promenljivih.

Definicije iz teorije skupova[uredi - уреди]

Datoteka:Funkcija.gif
Sl.1. Funkcija

Skup se u matematici uzima za osnovni pojam. Dekartov proizvod skupova je skup uređenih parova. Uređeni par elemenata čine bilo kakva dva elementa kod kojih se, iz bilo kojih razloga, zna koji od njih je prvi, a koji drugi. Zatim, relacija (matematika) je neprazan podskup Dekartovog proizvoda skupova, i konačno, funkcija je jedna vrsta relacije, slika desno. Na slici desno, pre svega, data je relacija f=\{(a,\alpha),(b,\beta),(c,\beta)\}.\, Zašto takvu relaciju nazivamo i funkcija?

Definicija
Neka su A i B neprazni skupovi. Tada se binarna relacija f\subseteq A\times B zove funkcija ili preslikavanje iz A u B, ako važi (\forall x\in A)(\exists!y\in B)y=f(x).

Poslednji izraz je formula napisana pomoću kvantora svaki (obrnuto slovo A) i postoji tačno jedan (obrnuto E sa uzvičnikom) koja se čita: "za svako iks iz A postoji tačno jedno ipsilon iz Be takvo da je y=f(x)". To znači da na grafu, desno, iz svakog od elemenata skupa A=\{a,b,c\} polazi po tačno jedna strelica, koja predstavlja (po tačno jedan) uređeni par (za svako od slova a, b, c.) Drugim rečima, funkcija je takva vrsta relacije gde je svaki elemenat jednog od skupova tačno po jednom prvi.

Druga, ekvivalentna definicija: binarna relacija f iz A u B je funkcija ako je

((x,y)\in f \wedge (x,z)\in f)\Rightarrow (y=z).

Ova definicija postavlja isti kriterijum: ako su originali jednaki (h=h) tada su i kopije jednake (y=z). Dakle, ne može isti original proizvesti različite kopije!

Elementi skupa A nazivaju se argumenti, nezavisno promenljive, originali preslikavanja, likovi, ili elementi domena. Skup A je skup prvih elemenata uređenih parova, na grafu to je polazni skup strelice, naziva se domen, područje vrednosti (rang), itd. funkcije f. Skup B naziva se kodomen (kontradomen) funkcije, skup kopija, slika, itd. Često se domen funkcije f označava sa \mathcal{D}(f), a kodomen ponekad \mathcal{K}(f). Na navedenom grafu je \mathcal{D}(f)=A,\; \mathcal{K}(f)=B i f je funkcija sa A u B, što pišemo f:A\rightarrow B, ili f:x\rightarrow y,\; x\in A,\; y\in B. Često umesto y stavljamo f(x), pa je y=f(x),\; x\in A,\; y\in B.

Definicija
Funkcija f:A\rightarrow B zove se surjekcija, ili "na"-preslikavanje, ako je \mathcal{K}(f)=B.

Pomoću kvantora tu istu definiciju pišemo: (\forall y\in B)(\exists x\in A)\;y=f(x). Jednostavnije rečeno, funkcija je surjekcija ako i samo ako su svi elementi desnog skupa (B) nečije slike. Na gornjem grafu ka elementu γ ne ide niti jedna strelica. Prema tome, data funkcija nije surjekcija. Surjekcija po definiciji dozvoljava „duple kopije“.

Definicija
Funkcija f:A\rightarrow B zove se injekcija, ili "1-1"-preslikavanje, ako važi (\forall x_1,x_2\in A)(f(x_1)=f(x_2))\Rightarrow (x_1=x_2).

To je definicija po formi obrnuta onoj drugoj definiciji funkcije: ista kopija ne može biti rezultat kopiranja različitih originala. Na datom grafu, elemenat β je kopija dva originala i prema tome data funkcija f nije injekcija. Injekcija po definiciji dozvoljava da u skupu kopija postoje elementi koji uopšte nisu rezultat preslikavanja.

Definicija
Funkcija koja je surjekcija i injekcija zove se bijekcija.

Bijekciju nazivamo i obostrano jednoznačno preslikavanje.

Teškoće prve teorije skupova[uredi - уреди]

Bijekcija je odigrala važnu ulogu u razmatranju pojma beskonačnosti i njemu srodnih pojmova. Ako postoje dva skupa i makar jedna funkciju među njima koja je bijekcija onda ta dva skupa imaju isti broj elemenata. To znači da ako za dva beskonačna skupa, recimo brojeva, pronađemo bar jedno bijektivno preslikavanje među njima, tada kažemo da oni imaju jednako mnogo elemenata. To je jedna od osnovnih ideja osnivača teorije skupova Kantora i Dedekinda.

Početnu ideju skupova je ubrzo, početkom 20. veka, uzdrmao britanski matematičar i filozof, Bertran Rasel, našavši nekoliko nedoslednosti u Kantorovoj teoriji. Danas se te nedoslednosti obično nazivaju paradoksima teorije skupova. Rasel je ukazao na paradoks praznog skupa, koji je razrešen zahtevom da je prazan skup podskup svakog skupa. Njegov drugi paradoks je paradoks skupa svih skupova. Ideja skupa svih skupova je kontradiktorna, tako da današnja teorija skupova, jednostavno, ne zahteva postojanje sveobuhvatnog, "univerzalnog skupa".

Eksterni linkovi[uredi - уреди]