NADP-retinol dehidrogenaza
NADP-retinol dehidrogenaza | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifikatori | |||||||||
EC broj | 1.1.1.300 | ||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB | RCSB PDB PDBe PDBj PDBsum | ||||||||
|
NADP-retinol dehidrogenaza (EC 1.1.1.300, all-trans retinalna reduktaza, all-trans-retinolna dehidrogenaza, NADP(H)-zavisna retinolna dehidrogenaza/reduktaza, RDH11, RDH12, RDH13, RDH14, retinolna dehidrogenaza 12, retinolna dehidrogenaza 14, retinolna dehidrogenaza (NADP+), RalR1, PSDR1) je enzim sa sistematskim imenom retinol:NADP+ oksidoreduktaza.[1][2][3][4] Ovaj enzim katalizuje sledeću hemijsku reakciju
- retinol + NADP+ retinal + NADPH + H+
Ovaj enzim ima veću katalitičku efikasnost u reduktivnom smeru. Ta činjenica, i enzimska lokalizacija na ulazu u mitohondrijalni matriks, sugerišu da je njegova funkcija zaštita mitohondrija protiv oksidativnnog stresa vezanog za visoko reaktivni retinal formiran iz dijetarnog beta-karotena dejstvom EC 1.14.99.36 (beta-karoten 15,15'-monooksigenaza). Km-vrednosti za NADP+ i NADPH su najmanje 800-puta niže od onih za NAD+ i NADH. Ovaj enzim se razlikuje od EC 1.1.1.105, retinolne dehidrogenaza, koja preferira NAD+ i NADH.
- ↑ Belyaeva, O.V., Korkina, O.V., Stetsenko, A.V., Kim, T., Nelson, P.S. and Kedishvili, N.Y. (2005). „Biochemical properties of purified human retinol dehydrogenase 12 (RDH12): catalytic efficiency toward retinoids and C9 aldehydes and effects of cellular retinol-binding protein type I (CRBPI) and cellular retinaldehyde-binding protein (CRALBP) on the oxidation and reduction of retinoids”. Biochemistry 44: 7035-7047. PMID 15865448.
- ↑ Belyaeva, O.V., Korkina, O.V., Stetsenko, A.V. and Kedishvili, N.Y. (2008). „Human retinol dehydrogenase 13 (RDH13) is a mitochondrial short-chain dehydrogenase/reductase with a retinaldehyde reductase activity”. FEBS J. 275: 138-147. PMID 18039331.
- ↑ Haeseleer, F., Huang, J., Lebioda, L., Saari, J.C. and Palczewski, K. (1998). „Molecular characterization of a novel short-chain dehydrogenase/reductase that reduces all-trans-retinal”. J. Biol. Chem. 273: 21790-21799. PMID 9705317.
- ↑ Kedishvili, N.Y., Chumakova, O.V., Chetyrkin, S.V., Belyaeva, O.V., Lapshina, E.A., Lin, D.W., Matsumura, M. and Nelson, P.S. (2002). „Evidence that the human gene for prostate short-chain dehydrogenase/reductase (PSDR1) encodes a novel retinal reductase (RalR1)”. J. Biol. Chem. 277: 28909-28915. PMID 12036956.
- Nicholas C. Price, Lewis Stevens (1999). Fundamentals of Enzymology: The Cell and Molecular Biology of Catalytic Proteins (Third izd.). USA: Oxford University Press. ISBN 019850229X.
- Eric J. Toone (2006). Advances in Enzymology and Related Areas of Molecular Biology, Protein Evolution (Volume 75 izd.). Wiley-Interscience. ISBN 0471205036.
- Branden C, Tooze J.. Introduction to Protein Structure. New York, NY: Garland Publishing. ISBN: 0-8153-2305-0.
- Irwin H. Segel. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems (Book 44 izd.). Wiley Classics Library. ISBN 0471303097.
- Robert A. Copeland (2013). Evaluation of Enzyme Inhibitors in Drug Discovery: A Guide for Medicinal Chemists and Pharmacologists (2nd izd.). Wiley-Interscience. ISBN 111848813X.
- Gerhard Michal, Dietmar Schomburg (2012). Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology (2nd izd.). Wiley. ISBN 0470146842.