Linearna jednačina

Iz Wikipedije, slobodne enciklopedije
Idi na navigaciju Idi na pretragu
Grafički primer linearne jednačine.

Linearna jednačina je algebrska jednačina u kojoj je svaki član bilo konstanta ili proizvod konstante i jedne promenljive prvog reda.

O pravcu se može razmišljati kao o najkraćoj udaljenosti između dviju točaka ili kao o krivulji s beskonačno velikim radijusom zakrivljenosti. Pojmovi kao što su točke i pravci te njihovi jednostavni i složeniji odnosi u prostoru jedan su od temelja Euklidske geometrije, a kasnije i analitičke geometrije kakvu je danas poznajemo.

Jednadžba pravca[uredi - уреди | uredi izvor]

Implicitna jednadžba pravca[uredi - уреди | uredi izvor]

Razmatramo li jednakost oblika

ustanovit ćemo da postoji beskonačan broj parova x,y koji udovoljavaju jednakosti. Kako svaki uređen par brojeva u kartezijanskom koordinatnom sustavu x0y određuje koordinate jedne točke, grafički prikaz svih točaka daje nam sliku pravca u ravnini, a gore prikazanu jednadžbu nazivamo implicitnom ili općom jednadžbom pravca.

Eksplicitna jednadžba pravca[uredi - уреди | uredi izvor]

Preuredimo li implicitnu jednadžbu pravca

u drugi oblik kako slijedi

naći ćemo i eksplicitnu jednadžbu pravca koja se može zapisati i u obliku

gdje a i b ovise o A, B i C na način da je

Eksplicitna jednadžba pravca izravno prikazuje koficijent smjera pravca, odn. nagib pravca a te odsječak b koji pravac određuje na y-osi, odn. ordinati.

Segmentna jednadžba pravca[uredi - уреди | uredi izvor]

Grafički prikaz pravca y=ax+b i njegovih odsječaka na osima x i y.

Preuredimo li sada eksplicitnu jednadžbu pravca

u treći oblik kako slijedi

naći ćemo i jednadžbu pravca u segmentnom obliku gdje su b i -b/a segmenti ili odsječci na y, odn. x-osi. Segmentna jednadžba pravca može se zapisati i u sljedećem obliku

gdje su

Druge oznake[uredi - уреди | uredi izvor]

Ponekad se implicitna jednadžba pravca iskazuje u obliku

gdje se tada eksplicitna jednadžba pravca prikazuje kao

gdje je k koeficijent smjer pravca, a l odsječak na y-osi.

Određenost pravca[uredi - уреди | uredi izvor]

Pravac je u ravnini određen ili sa zadanom točkom kroz koju prolazi pravac i koeficijentom smjera ili s dvjema zadanim točkama kroz koje pravac prolazi.

Pravac određen točkom i koeficijentom smjera[uredi - уреди | uredi izvor]

Neka je pravac određen točkom i koeficijentom smjera a. Jednadžba pravca se u tom slučaju uobičajeno prikazuje u obliku

.

Pravac određen dvjema točkama[uredi - уреди | uredi izvor]

Pravac je po definiciji određen dvjema točkama koje nisu jednake, a jednadžba pravca koji prolazi kroz dvije točke i prikazuje se uobičajeno u obliku

.

Značaj[uredi - уреди | uredi izvor]

Pravac, njegovu grafičku i matematičku interpretaciju nalazimo u brojnim područjima matematike i ne samo matematike. Naime, razmotrimo li eksplicitni oblik jednadžbe pravca

i ukoliko definiramo da je x slobodna promjenljiva veličina, odn. nezavisna varijabla, a y zavisna varijabla gdje će nezavisna varijabla poprimati vrijednosti iz domene realnih brojeva i gdje će se svakom elementu domene pridružiti jedan i samo jedan odgovarajući element kodomene, tada gore prikazani izraz možemo nazvati funkcijom gdje je

Kodomenu nazivamo i područjem vrijednosti funkcije, a u slučaju gdje je funkcija oblika: , funkciju nazivamo i linearnom funkcijom, a pravac grafom ili grafičkim prikazom takve funkcije. Linearna funkcija uključuje i proporcionalnu, odn. razmjernu funkciju oblika

koju slijede brojni prirodni zakoni i pojave u svim područjima znanosti.

Literatura[uredi - уреди | uredi izvor]

  • Barnett, R.A.; Ziegler, M.R.; Byleen, K.E. (2008), College Mathematics for Business, Economics, Life Sciences and the Social Sciences (11th izd.), Upper Saddle River, N.J.: Pearson, ISBN 0-13-157225-3 
  • Hans Wilhelm Alt: Lineare Funktionalanalysis: Eine anwendungsorientierte Einführung. 5. Auflage. Springer-Verlag, 2008, ISBN 3-540-34186-2.
  • Bernd Aulbach: Gewöhnliche Differenzialgleichungen. 2. Auflage. Spektrum Akademischer Verlag, 2004, ISBN 3-827-41492-X.
  • Albrecht Beutelspacher: Lineare Algebra. Eine Einführung in die Wissenschaft der Vektoren, Abbildungen und Matrizen. 7. Auflage. Vieweg, 2009, ISBN 3-528-66508-4.
  • Peter Bundschuh: Einführung in die Zahlentheorie. 6. Auflage. Springer-Verlag, 2010, ISBN 3-540-76490-9.
  • Gerd Fischer: Lineare Algebra: Eine Einführung für Studienanfänger. 17. Auflage. Vieweg Verlag, 2009, ISBN 3-834-80996-9.
  • Günter Gramlich: Lineare Algebra. Fachbuchverlag Leipzig im Carl Hanser Verlag, 2003, ISBN 3-446-22122-0.
  • Jürgen Jost: Partielle Differentialgleichungen: Elliptische (und parabolische) Gleichungen. 1. Auflage. Springer-Verlag, 2009, ISBN 3-540-64222-6.

Vanjske veze[uredi - уреди | uredi izvor]