Вигнеров 9-j симбол дефинисао је Еуген Вигнер као суму преко 6-j симбол а:
{
j
1
j
2
j
3
j
4
j
5
j
6
j
7
j
8
j
9
}
=
∑
x
(
−
1
)
2
x
(
2
x
+
1
)
{
j
1
j
4
j
7
j
8
j
9
x
}
{
j
2
j
5
j
8
j
4
x
j
6
}
{
j
3
j
6
j
9
x
j
1
j
2
}
{\displaystyle {\begin{Bmatrix}j_{1}&j_{2}&j_{3}\\j_{4}&j_{5}&j_{6}\\j_{7}&j_{8}&j_{9}\end{Bmatrix}}=\sum _{x}(-1)^{2x}(2x+1){\begin{Bmatrix}j_{1}&j_{4}&j_{7}\\j_{8}&j_{9}&x\end{Bmatrix}}{\begin{Bmatrix}j_{2}&j_{5}&j_{8}\\j_{4}&x&j_{6}\end{Bmatrix}}{\begin{Bmatrix}j_{3}&j_{6}&j_{9}\\x&j_{1}&j_{2}\end{Bmatrix}}}
.
Везањем четири угаона момента добијају се Клебш-Горданови коефицијенти . Три угаона момента можемо да вежемо на неколико начина. Два угаона момента можемо да вежемо исто тако на више начина. Нпр.
j
1
{\displaystyle \mathbf {j} _{1}}
,
j
2
{\displaystyle \mathbf {j} _{2}}
,
j
4
{\displaystyle \mathbf {j} _{4}}
и
j
5
{\displaystyle \mathbf {j} _{5}}
могу да се вежу тако да најпре вежемо
j
1
+
j
2
=
j
3
{\displaystyle \mathbf {j} _{1}+\mathbf {j} _{2}=\mathbf {j} _{3}}
и
j
4
+
j
5
=
j
6
{\displaystyle \mathbf {j} _{4}+\mathbf {j} _{5}=\mathbf {j} _{6}}
а онда:
j
3
+
j
6
=
j
9
{\displaystyle \mathbf {j} _{3}+\mathbf {j} _{6}=\mathbf {j} _{9}}
Ми то пишемо у скраћеном облику као:
|
(
(
j
1
j
2
)
j
3
,
(
j
4
j
5
)
j
6
)
j
9
m
9
⟩
.
{\displaystyle |((j_{1}j_{2})j_{3},(j_{4}j_{5})j_{6})j_{9}m_{9}\rangle .}
Други начин да се вежу 3 или 4 угаона момента је:
j
1
+
j
4
=
j
7
{\displaystyle \mathbf {j} _{1}+\mathbf {j} _{4}=\mathbf {j} _{7}}
и
j
2
+
j
5
=
j
8
{\displaystyle \mathbf {j} _{2}+\mathbf {j} _{5}=\mathbf {j} _{8}}
а онда:
j
7
+
j
8
=
j
9
{\displaystyle \mathbf {j} _{7}+\mathbf {j} _{8}=\mathbf {j} _{9}}
односно у скраћеном облику:
|
(
(
j
1
j
4
)
j
7
,
(
j
2
j
5
)
j
8
)
j
9
m
9
⟩
.
{\displaystyle |((j_{1}j_{4})j_{7},(j_{2}j_{5})j_{8})j_{9}m_{9}\rangle .}
Трансформација између два облика је:
|
(
(
j
1
j
4
)
j
7
,
(
j
2
j
5
)
j
8
)
j
9
m
9
⟩
=
{\displaystyle |((j_{1}j_{4})j_{7},(j_{2}j_{5})j_{8})j_{9}m_{9}\rangle =}
∑
j
3
∑
j
6
|
(
(
j
1
j
2
)
j
3
,
(
j
4
j
5
)
j
6
)
j
9
m
9
⟩
⟨
(
(
j
1
j
2
)
j
3
,
(
j
4
j
5
)
j
6
)
j
9
|
(
(
j
1
j
4
)
j
7
,
(
j
2
j
5
)
j
8
)
j
9
⟩
.
{\displaystyle \sum _{j_{3}}\sum _{j6}|((j_{1}j_{2})j_{3},(j_{4}j_{5})j_{6})j_{9}m_{9}\rangle \langle ((j_{1}j_{2})j_{3},(j_{4}j_{5})j_{6})j_{9}|((j_{1}j_{4})j_{7},(j_{2}j_{5})j_{8})j_{9}\rangle .}
При томе 9-j симбол симбол може да се дефинише као:
[
(
2
j
3
+
1
)
(
2
j
6
+
1
)
(
2
j
7
+
1
)
(
2
j
8
+
1
)
]
1
2
{
j
1
j
2
j
3
j
4
j
5
j
6
j
7
j
8
j
9
}
=
{\displaystyle [(2j_{3}+1)(2j_{6}+1)(2j_{7}+1)(2j_{8}+1)]^{\frac {1}{2}}{\begin{Bmatrix}j_{1}&j_{2}&j_{3}\\j_{4}&j_{5}&j_{6}\\j_{7}&j_{8}&j_{9}\end{Bmatrix}}=}
⟨
(
(
j
1
j
2
)
j
3
,
(
j
4
j
5
)
j
6
)
j
9
|
(
(
j
1
j
4
)
j
7
,
(
j
2
j
5
)
j
8
)
j
9
⟩
.
{\displaystyle \langle ((j_{1}j_{2})j_{3},(j_{4}j_{5})j_{6})j_{9}|((j_{1}j_{4})j_{7},(j_{2}j_{5})j_{8})j_{9}\rangle .}
9-j симболи задовољавају релацију ортогоналности:
∑
j
7
j
8
(
2
j
7
+
1
)
(
2
j
8
+
1
)
{
j
1
j
2
j
3
j
4
j
5
j
6
j
7
j
8
j
9
}
{
j
1
j
2
j
3
′
j
4
j
5
j
6
′
j
7
j
8
j
9
}
=
δ
j
3
j
3
′
δ
j
6
j
6
′
Δ
(
j
1
j
2
j
3
)
Δ
(
j
4
j
5
j
6
)
Δ
(
j
3
j
6
j
9
)
(
2
j
3
+
1
)
(
2
j
6
+
1
)
.
{\displaystyle \sum _{j_{7}j_{8}}(2j_{7}+1)(2j_{8}+1){\begin{Bmatrix}j_{1}&j_{2}&j_{3}\\j_{4}&j_{5}&j_{6}\\j_{7}&j_{8}&j_{9}\end{Bmatrix}}{\begin{Bmatrix}j_{1}&j_{2}&j_{3}'\\j_{4}&j_{5}&j_{6}'\\j_{7}&j_{8}&j_{9}\end{Bmatrix}}={\frac {\delta _{j_{3}j_{3}'}\delta _{j_{6}j_{6}'}\Delta (j_{1}j_{2}j_{3})\Delta (j_{4}j_{5}j_{6})\Delta (j_{3}j_{6}j_{9})}{(2j_{3}+1)(2j_{6}+1)}}.}
где је:
Δ
(
a
,
b
,
c
)
=
[
(
a
+
b
−
c
)
!
(
a
−
b
+
c
)
!
(
−
a
+
b
+
c
)
!
/
(
a
+
b
+
c
+
1
)
!
]
1
/
2
{\displaystyle \Delta (a,b,c)=[(a+b-c)!(a-b+c)!(-a+b+c)!/(a+b+c+1)!]^{1/2}}
Вигнеров 9-j симбол је инваријантан на рефлексије око дијагонале:
{
j
1
j
2
j
3
j
4
j
5
j
6
j
7
j
8
j
9
}
=
{
j
1
j
4
j
7
j
2
j
5
j
8
j
3
j
6
j
9
}
=
{
j
9
j
6
j
3
j
8
j
5
j
2
j
7
j
4
j
1
}
.
{\displaystyle {\begin{Bmatrix}j_{1}&j_{2}&j_{3}\\j_{4}&j_{5}&j_{6}\\j_{7}&j_{8}&j_{9}\end{Bmatrix}}={\begin{Bmatrix}j_{1}&j_{4}&j_{7}\\j_{2}&j_{5}&j_{8}\\j_{3}&j_{6}&j_{9}\end{Bmatrix}}={\begin{Bmatrix}j_{9}&j_{6}&j_{3}\\j_{8}&j_{5}&j_{2}\\j_{7}&j_{4}&j_{1}\end{Bmatrix}}.}
Ако се пермутирају било која два реда или две колоне :
{
j
1
j
2
j
3
j
4
j
5
j
6
j
7
j
8
j
9
}
=
(
−
1
)
S
{
j
4
j
5
j
6
j
1
j
2
j
3
j
7
j
8
j
9
}
=
(
−
1
)
S
{
j
2
j
1
j
3
j
5
j
4
j
6
j
8
j
7
j
9
}
.
{\displaystyle {\begin{Bmatrix}j_{1}&j_{2}&j_{3}\\j_{4}&j_{5}&j_{6}\\j_{7}&j_{8}&j_{9}\end{Bmatrix}}=(-1)^{S}{\begin{Bmatrix}j_{4}&j_{5}&j_{6}\\j_{1}&j_{2}&j_{3}\\j_{7}&j_{8}&j_{9}\end{Bmatrix}}=(-1)^{S}{\begin{Bmatrix}j_{2}&j_{1}&j_{3}\\j_{5}&j_{4}&j_{6}\\j_{8}&j_{7}&j_{9}\end{Bmatrix}}.}
тада се множи фазним фактором
(
−
1
)
S
{\displaystyle (-1)^{S}}
, где је
S
=
∑
i
=
1
9
j
i
.
{\displaystyle S=\sum _{i=1}^{9}j_{i}.}
За
j
9
=
0
{\displaystyle j_{9}=0}
9-j симбол пропорционалан је 6-j симболу:
{
j
1
j
2
j
3
j
4
j
5
j
6
j
7
j
8
0
}
=
δ
j
3
,
j
6
δ
j
7
,
j
8
(
2
j
3
+
1
)
(
2
j
7
+
1
)
(
−
1
)
j
2
+
j
3
+
j
4
+
j
7
{
j
1
j
2
j
3
j
5
j
4
j
7
}
.
{\displaystyle {\begin{Bmatrix}j_{1}&j_{2}&j_{3}\\j_{4}&j_{5}&j_{6}\\j_{7}&j_{8}&0\end{Bmatrix}}={\frac {\delta _{j_{3},j_{6}}\delta _{j_{7},j_{8}}}{\sqrt {(2j_{3}+1)(2j_{7}+1)}}}(-1)^{j_{2}+j_{3}+j_{4}+j_{7}}{\begin{Bmatrix}j_{1}&j_{2}&j_{3}\\j_{5}&j_{4}&j_{7}\end{Bmatrix}}.}
∑
j
13
j
24
(
−
1
)
2
j
2
+
j
24
+
j
23
−
j
34
(
2
j
13
+
1
)
(
2
j
24
+
1
)
{
j
1
j
2
j
12
j
3
j
4
j
34
j
13
j
24
j
}
{
j
1
j
3
j
13
j
4
j
2
j
24
j
14
j
23
j
}
=
{
j
1
j
2
j
12
j
4
j
3
j
34
j
14
j
23
j
}
.
{\displaystyle \sum _{j_{13}\,j_{24}}(-1)^{2j_{2}+j_{24}+j_{23}-j_{34}}(2j_{13}+1)(2j_{24}+1){\begin{Bmatrix}j_{1}&j_{2}&j_{12}\\j_{3}&j_{4}&j_{34}\\j_{13}&j_{24}&j\end{Bmatrix}}{\begin{Bmatrix}j_{1}&j_{3}&j_{13}\\j_{4}&j_{2}&j_{24}\\j_{14}&j_{23}&j\end{Bmatrix}}={\begin{Bmatrix}j_{1}&j_{2}&j_{12}\\j_{4}&j_{3}&j_{34}\\j_{14}&j_{23}&j\end{Bmatrix}}.}
3ј, 6ј и 9ј симболи
Abramowitz, Milton; Stegun, Irene A., eds. (1965), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover, ISBN 978-0-486-61272-0
Edmonds, A. R., Angular Momentum in Quantum Mechanics, Princeton, New Jersey: Princeton University Press (1957), ISBN 0-691-07912-9
Messiah, Albert , Quantum Mechanics (Volume II) (12th ed.), New York: North Holland Publishing (1981), ISBN 0-7204-0045-7