Huygensov princip – razlika između verzija

Izvor: Wikipedija
Prijeđi na navigaciju Prijeđi na pretragu
Uklonjeni sadržaj Dodani sadržaj
EmausBot (razgovor | doprinos)
m r2.7.2+) (robot Mijenja: ko:하위헌스 원리
Addbot (razgovor | doprinos)
m Bot: migracija 36 međuwiki veza sada dostupnih na stranici d:q188321 na Wikidati
Red 23: Red 23:


[[Kategorija:Talasi]]
[[Kategorija:Talasi]]

[[ar:مبدأ هوغنس]]
[[az:Hüygens-Freznel prinsipi]]
[[ca:Principi de Huygens]]
[[cs:Huygensův princip]]
[[de:Huygenssches Prinzip]]
[[en:Huygens–Fresnel principle]]
[[es:Principio de Fresnel - Huygens]]
[[et:Huygensi printsiip]]
[[fa:اصل هویگنس]]
[[fi:Huygensin periaate]]
[[fr:Principe de Huygens-Fresnel]]
[[gl:Principio de Huygens]]
[[he:עקרון הויגנס]]
[[hr:Huygensovo načelo]]
[[id:Prinsip Huygens]]
[[it:Principio di Huygens-Fresnel]]
[[ja:ホイヘンス=フレネルの原理]]
[[kk:Гюйгенс — Френель принципі]]
[[ko:하위헌스 원리]]
[[lt:Hiugenso ir Frenelio principas]]
[[nl:Principe van Huygens-Fresnel]]
[[pl:Zasada Huygensa]]
[[pms:Prinsipi ëd Huygens-Fresnel]]
[[pt:Princípio de Huygens]]
[[ro:Principiul Huygens–Fresnel]]
[[ru:Принцип Гюйгенса — Френеля]]
[[sk:Huygensov princíp]]
[[sl:Huygensovo načelo]]
[[sr:Хајгенсов принцип]]
[[sv:Huygens princip]]
[[ta:ஐகன்சு–பிரனெல் தத்துவம்]]
[[th:หลักการของไฮเกนส์]]
[[tr:Huygens-Fresnel ilkesi]]
[[uk:Принцип Гюйгенса]]
[[vi:Nguyên lý Huygens-Fresnel]]
[[zh:惠更斯-菲涅耳原理]]

Verzija na datum 13 mart 2013 u 01:19

Prelamanje vala na granici materijala C1 i C2 prema Huygensovom principu
Ogib (difrakcija) vala prema Huygensovom principu

Hajgensov princip jeste princip koji se odnosi na prostiranje talasa kroz sredinu. Prema ovom principu, svaka čestica sredine na koju nailazi neki talas postaje izvor sfernih talasa.

Opšte odlike principa

Rezultujući talasni front je u stvari obvojnica pojedinačnih sfernih talasa.

Očigledno je da je u slučaju prostiranja sfernih talasa rezultujuća obvojnica oblika sfernog talasa. U slučaju da je nominalni talas ravan onda će i obvojnica sfernih talasa biti prava linija koja odgovara ravnom talasu.

Ukoliko ravan talas prostirući se kroz neku sredinu naiđe na prepreku sa prorezom onda prolazeći kroz prorez talasi prestaju da budu ravni. Naime, oko svake tačke u prelaznoj liniji prema Hajgensovom principu nastaju sferni talasi, a rezultujući talas nastaje kao obvojnica oko mnoštva prethodno pomenutih sfernih talasa.

Primena

Hajgensov princip se koristi za objašnjavanje odbijanja i prelamanja talasa. Značajnu primenu nalazi i generalno u objašnjavanju talasa i načina njihovog prostiranja kroz različite sredine.

Vidi još

Eksterni linkovi

  1. Huygens' Principle(en)