Parcijalna diferencijalna jednačina

Izvor: Wikipedia

Parcijalne diferencijalne jednačine:

  • Linearna homogena parcijalna jednačina je oblika:
 P_1 (x_1,. . ., x_n) \frac{ \partial u }{ \partial x_1 } +. .. + P_n (x_1,. . ., x_n) \frac{ \partial u }{ \partial x_n } = 0 .
  • Kvazilinearna parcijalna jednačina je oblika:
 P_1 (x_1,. . ., x_n,u) \frac{ \partial u }{ \partial x_1} +. .. + P_n (x_1,. . ., x_n,u) \frac{ \partial u}{ \partial x_n} = P_{n + 1} (x_1,. . ., x_n, u) .

Literatura[uredi - уреди]

  • Adomian, G. (1994). Solving Frontier problems of Physics: The decomposition method. Kluwer Academic Publishers. 
  • Courant, R.; Hilbert, D. (1962), Methods of Mathematical Physics, II, New York: Wiley-Interscience .
  • Evans, L. C. (1998), Partial Differential Equations, Providence: American Mathematical Society, ISBN 0-8218-0772-2 .
  • Ibragimov, Nail H (1993), CRC Handbook of Lie Group Analysis of Differential Equations Vol. 1-3, Providence: CRC-Press, ISBN 0-8493-4488-3 .
  • John, F. (1982), Partial Differential Equations (4th izd.), New York: Springer-Verlag, ISBN 0-387-90609-6 .
  • Jost, J. (2002), Partial Differential Equations, New York: Springer-Verlag, ISBN 0-387-95428-7 .
  • Lewy, Hans (1957), "An example of a smooth linear partial differential equation without solution", Annals of Mathematics. Second Series 66 (1) .
  • Liao, S.J. (2003), Beyond Perturbation: Introduction to the Homotopy Analysis Method, Boca Raton: Chapman & Hall/ CRC Press, ISBN 1-58488-407-X 
  • Olver, P.J. (1995), Equivalence, Invariants and Symmetry, Cambridge Press .
  • Petrovskii, I. G. (1967), Partial Differential Equations, Philadelphia: W. B. Saunders Co. .
  • Pinchover, Y.; Rubinstein, J. (2005), An Introduction to Partial Differential Equations, New York: Cambridge University Press, ISBN 0-521-84886-5 .
  • Polyanin, A. D. (2002), Handbook of Linear Partial Differential Equations for Engineers and Scientists, Boca Raton: Chapman & Hall/CRC Press, ISBN 1-58488-299-9 .
  • Polyanin, A. D.; Zaitsev, V. F. (2004), Handbook of Nonlinear Partial Differential Equations, Boca Raton: Chapman & Hall/CRC Press, ISBN 1-58488-355-3 .
  • Polyanin, A. D.; Zaitsev, V. F.; Moussiaux, A. (2002), Handbook of First Order Partial Differential Equations, London: Taylor & Francis, ISBN 0-415-27267-X .
  • Roubíček, T. (2013), Nonlinear Partial Differential Equations with Applications (2nd izd.), Basel, Boston, Berlin: Birkhäuser, ISBN 978-3-0348-0512-4 
  • Solin, P. (2005), Partial Differential Equations and the Finite Element Method, Hoboken, NJ: J. Wiley & Sons, ISBN 0-471-72070-4 .
  • Solin, P.; Segeth, K.; Dolezel, I. (2003), Higher-Order Finite Element Methods, Boca Raton: Chapman & Hall/CRC Press, ISBN 1-58488-438-X .
  • Stephani, H. (1989), Differential Equations: Their Solution Using Symmetries. Edited by M. MacCallum, Cambridge University Press .
  • Wazwaz, Abdul-Majid (2009). Partial Differential Equations and Solitary Waves Theory. Higher Education Press. ISBN 90-5809-369-7. 
  • Zwillinger, D. (1997), Handbook of Differential Equations (3rd izd.), Boston: Academic Press, ISBN 0-12-784395-7 .
  • Gershenfeld, N. (1999), The Nature of Mathematical Modeling (1st izd.), New York: Cambridge University Press, New York, NY, USA, ISBN 0-521-57095-6 .

Vidi još[uredi - уреди]

Spoljašnje veze[uredi - уреди]


E-to-the-i-pi.svg Nedovršeni članak Parcijalna diferencijalna jednačina koji govori o matematici je u začetku. Dopunite ga prema pravilima Wikipedije.