Fizika

Izvor: Wikipedia
Fizika
E = m c^2\,
Ekvivalencija mase i energije
Povijest fizike

Fizika (grčki: φύσις, phisis: priroda) je osnovna fundamentalna prirodna nauka koja proučava osnovna ili suštinska svojstva prirodnih pojava i tela. Fizičari proučavaju osnovna svojstva, strukturu i kretanje materije u prostoru i vremenu. Fizičke teorije se najčešće izražavaju kao matematičke relacije. Najutemeljenije pojave se nazivaju fizičkim zakonima ili zakonima fizike, međutim, i oni su kao i sve druge naučne teorije, podložni promenama. Pri tome, novi fizički zakoni obično ne isključuju stare, nego samo ograničavaju domen njihovog važenja.

Fizika je usko povezana sa drugim prirodnim naukama, kao i matematikom (zbog matematičkog opisivanja prirode), posebno hemijom, naukom koja se bavi atomima-hemijskim elementima i molekulima-hemijskim jedinjenjima. Hemija se u mnogome bazira na fizici, pogotovo na kvantnoj mehanici, termodinamici i elektromagnetizmu. Ipak, hemijske pojave su dovoljno različite i kompleksne tako da je hemija zasebna disciplina.

Uvod[uredi - уреди]

Domen i ciljevi[uredi - уреди]

Ovoj parabolični gejzir lave ilustruje Galilejev zakon o padajućim telima, kao i zračenje crnog tela - može se odrediti temperatura sudeći po temperaturi crnog tela.

Fizika se bavi širokim spektrom fenomena, od fizike subatomskih čestica, do fizike galaksija. U ovo spadaju najosnovniji objekti od kojih su sačinjeni svi ostali objekti i zato se za fiziku ponekad kaže da je fundamentalna nauka.

Cilj fizike je da opiše različite fenomene koji se dešavaju u prirodi putem prostijih fenomena. Stoga je zadatak fizike da poveže stvari koje se mogu videti sa njihovim uzrocima, a zatim da poveže ove uzroke zajedno kako bi se našao ultimativni razlog zašto je priorda takva kava je. Na primer, drevni Kinezi su prometili da se neka vrsta kamenja (magnetit) privlače ili odbijaju međusobno dejstvom neke nevidljive sile. Ovaj efekat je kasnije nazvan magnetizam i prvi put je ozbiljno proučavan u 17. veku. Malo ranije nego Kinezi, Stari Grci su znali da drugi predmeti, kao što je ćilibar protrljan krznom, izazivaju slično privlačenje ili odbijanje. Ovo je takođe prvi put ozbiljno proučavano u 17. veku i nazvano je elektricitetom. Dalja istraživanja u 19. veku su pokazala da su ove dve sile samo dva različita aspekta jedne sile - elektromagnetizma. Proces „ujedinjavanja sila“ se nastavlja i danas.

Naučni metod[uredi - уреди]

Fizika koristi naučni metod da proveri ispravnost neke fizičke teorije, koristeći metodičan pristup da uporedi implikacije te teorije sa zaključcima dobijenim iz sprovedenih eksperimenata i posmatranja. Eksperimenti i posmatranja se sakupljaju i porede sa predviđanjima i hipotezama koje tvrdi teorija i tako pomažu u određivanju istinitosti ili neistinitosti teorije.

Teorije koje su dobro pokrivene podacima i nisu nikada pale na nekom empirijskom testu se često nazivaju naučni zakoni ili zakoni prirode. Sve teorije, uključujući one koje se nazivaju zakonima prirode, se mogu uvek zameniti preciznijim, uopštenijim definicijama ako se pronađe neko neslaganje teorije sa prikupljenim podacima. Neki principi, poput Njutnovih zakona kretanja se još uvek nazivaju zakonima, iako se danas zna za neke slučajeve u kojima oni ne važe.

Teorija i eksperiment[uredi - уреди]

Astronaut i Zemlja su oboje u slobodnom padu
Munja je u suštini električna struja

Teoretičari teže da razviju matematički model koji se i slaže sa postojećim eksperimentima i koji može uspešno da predvidi buduće rezultate, dok eksperimentalisti smišljaju i izvode eksperimente da bi proverili teorijska predviđanja i istražili nove fenomene. Iako se teorija i eksperimenti razvijaju posebno, oni jako zavise jedan od drugog. Napredak u fizici često nastaje kada eksperimentalisti otkriju nešto novo što postojeće teorije ne mogu da otkriju, ili kada nove teorije izvode zaključke koje se mogu proveritu eskperimentalno, što inspiriše nove eksperimente. U odsustvu eksperimenta, teorijska istraživanja mogu da odu u pogrešnom pravcu; postoje kritike protiv M-teorije, popularne teorije u fizici velikih energija, za koju nijedan praktični eksperiment nije ikada osmišljen. Fizičari koji rade na i na polju teorije i na polju eksperimenta se često nazivaju fenomenologičari.

Teorijska fizika je blisko povezana sa matematikom, koja obezbeđuje jezik fizičkih teorija, a veliki delovi matematike, kao što je matematička analiza, su specijalno osmišljeni da bi se rešili problemi u fizici. Teoretičari mogu takođe da se oslone na numeričku analizu i računarske simulacije. Polja matematičke fizike i računarske fizike su aktivna polja u istraživanjima. Teorijska fizika se u svojoj istoriji oslanjala na filozofiju i metafiziku; na ovaj način su spojene teorije elektriciteta i magnetizma u elektromagnetizam. Izvan poznatog univerzuma, polje teorijske fizike se takođe bavi hipotetičkim pitanjima kao što su paralelni univerzumi ili više dimenzije. Fizičari spekulišu o ovim mogućnostima i iz njih postavljaju teorije. Koncept onoga šta se može smatrati hipotetičnim se može promeniti tokom vremena. Na primer, neki fizičari iz 19. veka su ismevali postojanje atoma. Do kraja Drugog svetskog rata, atomi nisu više bili hipotetička stvar.

Istorija[uredi - уреди]

Glavni članak: Istorija fizike

Od davnina su ljudi pokušavali da shvate ponašanje i osobine materije; zašto objekti padaju na zemlju kada izgube oslonac, zašto različiti materijali imaju različite osobine, i slično. Tajnovita je bila i priroda svemira, kao na primer oblik Zemlje, ponašanje i kretanje Sunca i Meseca. Mnoštvo teorija je pokušavalo da objasni te pojave, ali većina od njih na pogrešan način, jer nikada nisu bile potvrđene ogledom. Ipak postojalo je nekoliko izuzetaka, kao na primer Arhimed koji je izveo nekoliko značajnih i tačnih zakona mehanike i hidrostatike.

Tokom kasnog 16. veka, Galilej je uveo oglede kao način proveravanja fizičkih teorija i on je uspešno formulisao i ogledima potvrdio nekoliko zakona dinamike, kao što je zakon inercije. 1687, Njutn je objavio Matematičke principe filozofije prirode, (Principia Mathematica Philosophia Naturalis), njegovo čuveno delo u kojem su detaljno izloženi Njutnovi zakoni kretanja, na kojima počiva klasična mehanika; i Njutnov zakon gravitacije, koji opisuje jednu od četiri osnovne sile u prirodi, gravitaciju. Obe ove teorije su se slagale sa izvršenim ogledima. Klasičnoj mehanici su takođe značajno doprineli Lagranž, Hamilton, i drugi, koji su otkrili nove formulacije, principe i rezultate. Zakon gravitacije je podstakao i razvoj astrofizike, koji opisuje astronomske pojave fizičkim teorijama.

Od 18. veka pa nadalje, termodinamika je doživela značajna otkrića koja su imali Bojl, Jang, i mnogi drugi. 1733, Bernuli je koristio statističke metode sa klasičnom mehanikom da bi izveo termodinamičke rezultate, inicirajući time razvoj statističke mehanike. 1798, Tompson je demonstrirao pretvaranje mehaničkog rada u toplotu, a 1847 Džul je formulisao zakon o održanju energije, bilo u obliku toplote ili mehaničke energije.

Elektricitet i magnetizam su proučavali Faradej, Om, i drugi. 1855, Maksvel je ujedinio ove dve pojave u jedinstvenu teoriju elektromagnetizma, i opisao ih je Maksvelovim jednačinama. Ova teorija je pretpostavila da je svetlost elektromagnetni talas.

1895, Rentgen (nem. Wilhelm Conrad Roentgen) je otkrio X-zrake, koji predstavljaju elektromagnetno zračenje visoke frekvencije. Radioaktivnost je otkrio 1896 Henri Bekerel, a dalje su je proučavali Pjer Kiri, Marija Kiri i drugi. Ovo je postavilo temelje novom polju nuklearne fizike.

1897, Tomson je otkrio elektron, jednu od osnovnih čestica nosioca naelektrisanja. 1904, predložio je prvi model atoma. (Postojanje atoma je poznato još od 1808, kada ga je predvideo Dalton.

1905, Ajnštajn je uobličio teoriju relativnosti (specijalnu i opštu), ujedinjavajući prostor i vreme u jedinstven entitet i stvorio novu, relativističku, teoriju gravitacije. Bio je jedan od nekolicine naučnika koji su postavili temelje kvantnoj fizici.

1911, Raderford je iz ogleda sa rasejanjem alfa čestica na atomima zlata izveo postojanje kompaktnog atomskog jezgra, sa pozitivno naelektrisanim jedinicama protonima. Neutralno naelektrisane čestice, neutrone, je otkrio Čedvik, 1932.

Početkom 1900, Plank, Ajnštajn, Bor, i drugi su razvili kvantnu teoriju, da bi objasnili anomalije u eksperimentalnim rezultatima, te su tada uveli pojam diskretnih energetskih nivoa. 1925, Hajzenberg i Šredinger su formulisali kvantnu mehaniku, koja je objedinila dotada stečena saznanja o kvantnom-mikrosvetu i objasnila rezultate mnogobrojnih eksperimenata. U kvantnoj mehanici, ishodi fizičkog merenja podležu zakonima verovatnoće; teorija je propisala načine i pravila za izračunavanje ovih verovatnoća.

Kvantna mehanika je takođe razvila teoretske alate za fiziku čvrstog stanja, koja izučava fizička svojstva čvrstih tela i fiziku fluida koja proučava supstancije u tečnom stanju, uključujući pojave kao što su kristalna struktura, poluprovodnost i superprovodnost, kao i superfluidnost ili tečne kristale. Među pionire ove oblasti fizike spada Bloh, koji je opisao ponašanje elektrona u kristalnim strukturama 1928.

Tokom Drugog svetskog rata, sve zaraćene strane su istraživale nuklearnu fiziku, želeći da naprave atomsku bombu. Nemački napori nisu uspeli, ali je saveznički Projekat Menhetn ostvario cilj. U Americi, tim predvođen Fermijem je ostvario prvu veštački proizvedenu nuklearnu lančanu reakciju 1942, a 1945 prva nuklearna eksplozija je izvedena u Alamagordu, u Nju Meksiku .

Kvantna teorija polja je formulisana da bi obezbedila konzistentnost kvantne mehanike i Specijalne teorije relativnosti. Svoj moderni oblik je dostigla u kasnim 1940-tim radovima Fejnmana, Švingera, Tomonage i Dajsona. Oni su formulisali teoriju kvantne elektrodinamike, koja, kvantnim metodama, opisuje elektromagnetne interakcije.

Kvantna teorija polja je obezbedila okvir za modernu teoriju čestica, koja izučava osnovne sile prirode i osnovne čestice. 1954, Jang i Mils su postavili temelje koji su doveli do standardnog modela, koji je upotpunjen 1970, i uspešno opisuje sve do sada poznate čestice.

Glavna polja i osnove fizike[uredi - уреди]

Ključne teorije[uredi - уреди]

Područje Glavne teme Pojmovi
Klasična mehanika Newtonovi zakoni gibanja Zakon očuvanja energije
Masa
Energija
Moment
Sila
Elektromagnetizam Magnetizam
Elektricitet
Električna struja
Valovi i optika Titranje
Optika
Val
Harmonički oscilator
Vezane oscilacije
Prigušene oscilacije
Mehanički valovi
Interferencija valova
Stojni valovi
Valovi zvuka
Interferencija valova zvuka
Stojni zvučni valovi
Udari
Dopplerov efekt
Udarni valovi
LC-oscilacije
Izmjenična struja
Prisline oscilacije u LC i RLC krugovima
Elektromagnetski valovi
Geometrijska optika
Zrcala
Leće
Fizikalna optika
Difrakcija
Termodinamika
Statistička mehanika
Temperatura
Entropija
Kvantna mehanika Kvantna teorija polja
Standardni model
Simetrija Spin
Teorija relativnosti Opća relativnost
Posebna relativnost
Brzina svjetlosti
Teorija kaosa Atraktori

Osnove[uredi - уреди]

Materija -- Antimaterija -- Čestica -- Bozon -- Fermion
Vrijeme -- Prostor -- Dimenzija -- Dužina -- Brzina
Val -- Valna funkcija -- Harmonijski oscilator -- Elektromagnetno zračenje

Osnovne sile[uredi - уреди]

Osnovne sile: Gravitacija -- Elektromagnetska sila -- Slaba sila -- Jaka sila

Teorija čestica[uredi - уреди]

Teorija čestica -- Atom -- Proton -- Neutron -- Elektron -- Kvark -- Foton -- Gluon -- W bozon -- Z bozon -- Graviton -- Neutrino -- Radijacija -- Fermioni

Područja fizike[uredi - уреди]

Vidi još[uredi - уреди]

Izvori[uredi - уреди]

Commons-logo.svg U Wikimedijinoj ostavi nalazi se članak na temu: Physics
Wiktionary-logo-en.png Potražite izraz fizika u W(j)ečniku, slobodnom rječniku.